pub-9018797892728621, DIRECT, f08c47fec0942fa0

IRENA stating in a report for the G20 Energy Sustainability Working Group recently published that Bioenergy technologies have significant potential to scale up by 2050, It is about the Energy mix of the future. It should be read if possible in conjunction with Looking at the big debate between renewables and nuclear energy.

September 28, 2020 | Mega Trends & Analysis

Bioenergy makes up a large share of renewable energy use today and plays a key role as a source of energy and as a fuel in the end-use sectors (industry, transport and buildings), as well as in the power sector. International Renewable Energy Agency (IRENA) recently released its report titled “Recycle: Bioenergy”, describing how biomass has a central role in delivering many aspects of the energy transformation and help build a climate-friendly circular carbon economy. It discusses the current and potential application of bioenergy and renewable carbon, and presents the strong economic case supporting them, including their positive externalities and socio-economic benefits. REGlobal presents a brief extract from the report as follows…

Current status

Bioenergy today accounts for 70% of the global renewable energy supply and 10% of the total primary energy supply. In terms of end uses, the largest share of total bioenergy use (modern and traditional) is in the buildings sector, which includes cooking and space heating (26%). The second largest share is in the industry sector (at 7%), followed by the transport sector (3%), mostly in the form of liquid biofuels from crops such as sugar cane and corn, and the power sector (2%).

Industry sector: The industry sector uses energy for a wide range of purposes, such as for processing and assembly, steam generation, cogeneration, process heating and cooling, lighting, heating, and air conditioning. However, most of the energy consumed in industry is in the form of heat, especially in the most energy-intensive industrial sectors – iron and steel, chemical and petrochemical, nonmetallic minerals, pulp and paper, and the food industry. Current direct renewable energy use in industry is predominantly in the form of biofuels and energy from waste. Biomass could play an expanded role for the decarbonisation of the industry sector, as it offers an established renewable energy option to provide low-, medium- and high-temperature heat, as well as a feedstock that can replace fossil fuels. At a regional level, the largest share of biomass in industry’s final energy consumption in 2017 was in Latin America and the Caribbean at 32%, followed by Asia and Sub Saharan Africa, both at 29%.  

Biomass is also used for carbon emissions reductions in the industry sector through the production of natural synthetic fibres based on cellulose, and biomaterials to produce bioplastic. Biomass used for bioplastic production mainly comes from corn, sugarcane or cellulose (European Bioplastic, 2020). In 2019, according to the European Bioplastics association, the global production capacity of bioplastics reached 2.11 Mt using 0.79 million hectares of land, representing 0.02% of the global agricultural area of a total of 4.8 billion hectares. Production was concentrated in Asia (45%), followed by Europe (25%), North America (18%) and South America (12%).

Transport sector: Globally, the share of renewable energy in this sector is very small at just 3% in 2017. In road transport, the use of renewables is dominated by liquid biofuels, mostly bioethanol and biodiesel, which offer an alternative fuel for all types of internal combustion engines in both passenger vehicles and trucks. North America had the largest production of liquid biofuels in 2017, with 64 billion litres, followed by Latin America and the Caribbean with 31 billion litres and the European Union with 25 billion litres.

Liquid biofuels could also help decarbonise the shipping and aviation sectors, which currently are entirely fueled by fossil sources. The decarbonisation of these modes of transport is essential, as they make up 20% of total energy demand from transportation and are the fastest growing segments of the sector. Advanced biofuels offer significant emissions reductions compared to petrol and diesel. They can be made from non-food and non-feed biomass, including waste materials (such as vegetable oils or animal fats) and energy-specific crops grown on marginal or degraded land. They thus have a lower impact on food resources and lower probability of causing Land Use Change (LUC) and Indirect Land Use Change (ILUC). However, despite their advantages, advanced biofuels face significant barriers, such as lack of technological development, high production costs, immature supply chains and dependence on government support schemes.

Buildings sector: There are two different ways of using biomass in the buildings sector: space heating and cooking. Buildings can currently be heated using biomass through town-scale district heating systems or building-scale furnaces, both of which use feedstocks such as wood chips and pellets very efficiently. Cooking with biomass is typically one of the traditional uses of biomass in developing countries. Inefficient traditional cookstoves paired with solid fuels and kerosene emit indoor smoke that imperils the health of mainly women and children and causes nearly 4 million premature deaths every year. Unsurprisingly, the largest share of biomass consumption in the buildings sector in 2017 was in Sub Saharan Africa at 91% (entirely in the form of traditional uses). These detrimental cooking practices must be replaced with clean, efficient, modern systems that use improved cookstoves fueled with sustainably produced bioenergy such as wood, biogas or ethanol.

Power sector: Biomass and waste fuels in solid, liquid and gaseous forms are currently used to generate electricity. The feedstocks and technologies range from mature, low-cost options, like the combustion of agricultural and forestry residues, to less mature and/or expensive options, like biomass gasification or municipal solid waste generators with stringent emissions controls (IRENA, 2019c). However, electricity generation from biomass is most often provided through combined heat and power (CHP) systems. Power production from biomass is relatively flexible, so it can help to balance output over time on electricity grids with high shares of variable wind and solar power. At a regional level, in 2017 the European Union and Asia had the largest bioenergy capacity installed, a total of 34 GW each.

An important niche that has yet to be fully explored is the use of biomass residues and waste generated in bio-based industries such as pulp and paper, lumber and timber, and food processing and biofuels. These sectors usually have large amounts of biomass that can be used for energy production. To a large extent, the modern part of those industries already taps into those resources, mostly for electricity and heat generation, in stand-alone applications or co-generation systems.

Technology outlook for bioenergy and bio-based materials

Biomass, due to its versatility, could play significant roles in the industry sector. Biomass can be used as a feedstock to replace fossil fuels, it can be used to produce low-, medium- and high temperature heat, and it can be used as a fuel for localised electricity production. The versatility of biomass and its finite supply, however, also result in competition for its use within and between industry sectors, and other sectors of the economy. In IRENA’s analysis, renewable energy (including renewable electricity and district heating) could contribute 63% of industry’s total final energy consumption by 2050 (89 EJ in absolute terms). Of that total energy, 24% would be sourced from biomass (direct, bioelectricity and biomass in district heating) and the remaining 39% from other renewable sources.

Bioenergy technologies have significant potential to scale up by 2050
Renewable energy contribution to industry final energy consumption in the Transforming Energy Scenario (TES) in 2050
Note: “Other renewables” also includes renewable electricity
Source: Data extracted from: (IRENA, 2020)

Compared to current levels, energy demand in the transport sector is lower under the Transforming Energy Scenario due to efficiency improvements and other measures, such as changes in transport modes and reductions in the need for travel. Fossil fuel consumption (oil, natural gas) is sharply reduced, and there is a major increase in biofuels, which reach 17 EJ in 2050 (over five times 2017 levels) and provide 20% of total transport final energy demand. Electricity use in transport also grows sharply to 37 EJ (of which 2 EJ is bioelectricity, 29 EJ is from other renewable sources and the remaining 5 EJ is from fossil fuels), representing 43% of total transport final energy demand in 2050.

Final energy consumption in the transport sector per energy carrier (2017 and 2030- 2050 TES)
Source: Data extracted from: (IRENA, 2020)

Biofuels are an important alternative to fossil fuels, particularly for long-haul transport (aviation, marine and long-haul road freight), complementing the enhanced role of electrification and other urban measures. Transport will become much more electrified, but not everywhere, not in all sectors and not all at once. While EVs powered by renewable electricity will dominate light vehicle fleets, they can only enter markets with well-developed power grids. Long-haul transport is unlikely to be fully electrified due to the higher energy density it requires. Hence, a mix of oil-based, carbohydrate-based, and lignocellulosic biofuels has to be developed and used. Conventional fuel ethanol production will also have a continuing role where production costs are low. In IRENA’s analysis, overall liquid biofuel production could increase five-fold from 130 billion litres in 2016 to 652 billion litres in 2050.

At a regional level, North America would lead in liquid biofuel production, with 183 billion litres in 2020. However, liquid biofuels have a large potential in Asia, with production increasing from 13 billion litres in 2017 to 211 billion litres in 2050. Biogas can replace fossil gas in natural gas vehicles (NGV) or so-called dual-fuel vehicles. When biogas is upgraded to natural gas quality, it forms biomethane, which can also be used as a vehicle fuel, with similar properties to natural gas. Biomethane would increase from 0.4 bcm in 2017 to 13 bcm in 2050 and could be used for public transport, waste collecting vehicles or heavy freight trucks.

Biofuels production for the transport sector (2015-2017/2018, Planned Energy Scenario and Transforming Energy Scenario in 2030 and 2050) and biomethane production in 2017 and 2030-2050 in the Transforming Energy Scenario
Source: Data extracted from (IRENA, 2020; REN21, 2019)

Modern bioenergy use also is expected to play an increasing role in the decarbonisation of the buildings sector, particularly in areas with high demand for space heating. Buildings can be heated through town-scale district heating systems or building-scale furnaces, both of which use feedstocks like wood chips and pellets very efficiently. It is important, therefore, to replace existing low-efficiency heating systems by high efficiency district heating and cooling (DHC) or buildingscale furnaces fueled by renewable sources as much as possible.

In some cases, fossil fuel-based boilers can be co-fired with solid biomass, such as wood residues, or converted into biomass-only boilers. Biomass can also be used for both electricity and heat production in combined-heat and power (CHP) plants. Using biomass solely for electricity generation is not seen as a good choice because of its low efficiency, at about 30%. However, the overall efficiency of biomass-based CHP plants for industry or district heating can be 70%-90%. As a result, sustainable bioenergy used to provide heat and power can reduce emissions considerably compared to coal, oil and natural gas-generated heat and power.

In IRENA’s Transforming Energy Scenario, by 2050 the final energy consumption of modern biomass (solid, biogas and liquid biomass, bioelectricity and biomass in district heating) grows more than three-fold from the 2017 level in the buildings sector, from 5EJ in 2017 to 16EJ in 2050.

Final energy consumption in the buildings sector by energy carrier (2017-2030 and 2050 under the Transforming Energy Scenario)
Source: Data extracted from: (IRENA, 2020)

Under the Transforming Energy Scenario, the power sector would be transformed. The total amount of electricity generated would more than double by 2050 – to over 55 000 TWh (up from around 24 000 TWh today). The share of electricity in total final energy use would increase from just 20% today to 49% by 2050, and 86% of that electricity would be generated by renewable sources, mostly wind (35% of renewable electricity), solar PV (25%) and some hydro (14%) (Figure 6). Biomass would be the fourth largest renewable power source, generating 7% of electricity. To produce that much power, bioenergy installed capacity would increase six-fold from 108 GW in 2017 to 685 GW in 2050. Asia would lead in bioenergy installed capacity, with 318 GW, followed by the European Union with 107 GW and Latin America and the Caribbean with 94 GW. In addition, biomass can be used for co-firing coal power plants as an intermediate measure to reduce CO2 emissions.

Bioenergy-based electricity can play a particularly important role when: i) its generation costs are lower than other sources (i.e. where biomass feedstock costs are low or where heat can be used in co-generation systems); ii) it helps to balance output over time on electricity grids with high shares of variable wind and solar power; and iii) it is possible to use BECCS.

Total installed costs for bioenergy vary significantly. Projects using bagasse and rice husks tend to have lower installed costs than those using landfill gas, wood waste, other vegetal and agricultural waste and renewable municipal waste (IRENA, 2019c). Overall, however, bioelectricity’s relatively high costs and limited options for lowering them are the main constraining factors to faster deployment.

Electricity generation mix in 2017 and in the Transforming Energy Scenario in 2050
Source: Data extracted from: (IRENA, 2020)
Key barriers to deployment

Despite strong drivers for the uptake of bioenergy, multiple barriers stand in the path of its further development globally. These vary depending on specific markets and renewable energy technologies. They include challenges such as the high cost of many bioenergy options and the lack of access to finance. There also are policy barriers, including the lack of specific regulations, and cultural and awareness barriers. In particular, the deployment of biofuels is highly affected by global trends in oil prices. The recent abrupt decline in oil prices during the COVID-19 crisis, for example, is threatening the development and use of biofuels. If the current low fossil fuel prices are maintained, biofuels will struggle to compete with conventional fuels.

The key barriers to transitioning from traditional to modern uses of biomass are as follows:

  • One major barrier is the higher cost of the improved equipment and fuels which replace what is essentially a “free” resource of wood fuels and other residues (although their collection requires considerable time and effort). This cost barrier is reinforced by the lack of access to capital to finance the purchase of clean equipment and fuels, or to provide for investment and working capital for fuel or equipment production systems. When loans are available, they are generally only for small amounts, which disincentivises potential lenders from accepting the administrative costs to offer the financial products in the first place. Micro-finance can play an important role here.
  • Many proposed cookstove solutions do not have the technical characteristics to meet appropriate efficiency and environmental performance standards and also do not provide culturally acceptable solutions which reflect the needs of consumers, particularly in rural areas. Improved bioenergy cookstoves still have low efficiencies and often fail to meet health guidelines, unless associated with improved fuels (such as briquettes and pellets, or ethanol-based fuels).
  • “Clean” cooking fuels, such as biomass briquettes, and suitable cooking stoves have immature distribution channels, which can lead to supply concerns for clean cooking fuels or to higher prices. Distribution to remote rural areas is especially challenging. Fuel supply chains are often based on unsustainable patterns of biomass production which negatively affect forest cover. Programmes for improved biomass solutions often do not address the needs for sustainable fuel supply and for user solutions
  • The lack of a coherent strategic approach to clean cooking has been a major impediment to progress in many countries. The issues relating to clean cooking cut across many government actors, including ministries responsible for energy, social, financial, environmental and forestry issues, who may not give this issue priority, making coordination difficult.

There are a number of barriers for modern bioenergy in the developed context. Some of these are listed as follows:

  • When low-cost feedstocks are available as by-products from agricultural or forestry processes, bioenergy electricity can be competitive with fossil fuel solutions. In 2018, when about 5.7 GW of new bioenergy electricity projects were commissioned, the global weighted average LCOE of the new power plants was USD 0.062/kWh. This is a decrease of 14% from 2017. However, bioenergy power generation costs are often higher than those of other renewable generation technologies such as wind and solar PV, where costs have fallen dramatically in recent years.
Bioenergy technologies have significant potential to scale up by 2050
Comparison of costs of bioenergy and other options
Source: (IEA Bioenergy, 2020; UK Renewable Energy Association, 2019)
  • Investors often consider the risks associated with bioenergy projects to be higher than for other renewable technologies. This is because of increased risks associated with ensuring a reliable fuel supply and concerns about technology complexity and meeting sustainability criteria. In contrast to wind and solar projects, the risk profile of nearly every project is different, given different feedstock and technology combinations. Financing for large-scale demonstration for new technologies such as advanced biofuels is particularly challenging, especially since bioenergy systems need to be tested at large and therefore costly scales, unlike technologies based on modular units like wind and solar PV.
  • The deployment of bioenergy depends on a strong and supportive policy and regulatory regime that provides for investor certainty over the income streams that projects will receive and also clearly establishes the regulatory requirements that projects must satisfy. For example, regulations must specify levels of emissions to air and water that are permitted and what other sustainability criteria must be achieved. Policy certainty is particularly important for bioenergy projects, where project lead times tend to be long, given the needs to plan technical aspects of projects, to negotiate other energy off-take agreements (sometimes for more than one energy product – e.g. heat and power), and to build up the necessary supply chain.

Addressing these barriers will be fundamental for a successful energy transition in many countries and regions. Governments have important roles to play in providing measures to support deployment and technological innovation. Those measures can include grants, feedin tariffs and certificate schemes, as well as clear policy and regulatory frameworks, such as ambitious targets to drive markets and regulations for waste and blending. Policies and regulations could also help in ensuring that the appropriate infrastructure is in place for the greater uptake of bioenergy. For example, the availability of district heating systems is a powerful enabler for bioenergy heat supply in urban areas. Other enabling policy interventions include improving awareness of the benefits associated with bioenergy by providing clear and reliable information to consumers and potential investors; creating a level playing field through the removal of subsidies for fossil fuels; and introducing carbon pricing or other taxes, levies and duties to put a price on the environmental impacts of fossil fuel energy use.

“Ultimately, the success of the energy transition in mitigating the climate crisis will depend on the policies adopted, the speed of their implementation and the level of resources committed. In our interconnected world, international cooperation and solidarity are not just desirable, they are vital for addressing climate change, economic inequality and social injustice.”

Policies to support biomass use in energy

A wide range of policies and regulatory instruments can reduce barriers to bioenergy development and help create a positive enabling environment, ensuring that its development optimises carbon savings and avoids negative environmental, social or economic impacts.

Direct policies, which are normally used to support the development and deployment of technologies and are typically classified as push or pull, and as fiscal and financial.

Integrating policies, which promote planning and coordination, such as R&D policies and infrastructure policies.

Enabling policies, which focus on reforming the broader institutional architecture to enable systemic effects between the energy sector and the broader economy and which link four crucial national policies: industrial policy, labour market and social protection policy, education and skills policy, and financial policy

G20 member states have a strong economic and political interdependence, with a shared interest in creating a sustainable and stable global environment. G20 countries together can foster the development, deployment and spread of bioenergy technologies. Ultimately, the success of the energy transition in mitigating the climate crisis will depend on the policies adopted, the speed of their implementation and the level of resources committed. In our interconnected world, international cooperation and solidarity are not just desirable, they are vital for addressing climate change, economic inequality and social injustice.

The full report by IRENA can be downloaded by clicking here