Advertisements
A new low-cost solar technology for environmental cooling

A new low-cost solar technology for environmental cooling

A new low-cost solar technology for environmental cooling developed in Politecnico di Torino, Italy could bring some advantages in this day and age; especially in the MENA region.


Space cooling and heating is a common need in most inhabited areas. In Europe, the energy consumed for air conditioning is rising, and the situation could get worse in the near future due to the temperature increase in different regions worldwide. The increasing cooling need in buildings especially during the summer season is satisfied by the popular air conditioners, which often make use of refrigerants with high environmental impact and also lead to high electricity consumption. So, how can we reduce the energy demand for building cooling?

A new study comes from a research group based at the Politecnico di Torino (SMaLL) and the National Institute of Metrological Research (INRiM), who has proposed a device capable of generating a cooling load without the use of electricity: the research has been published in Science Advances*. Like more traditional cooling devices, this new technology also exploits the evaporation of a liquid. However, the key idea proposed by the Turin researchers is to use simple water and common salt instead of chemicals that are potentially harmful for the environment. The environmental impact of the new device is also reduced because it is based on passive phenomena, i.e. spontaneous processes such as capillarity or evaporation, instead of on pumps and compressors that require energy and maintenance.

“Cooling by water evaporation has always been known. As an example, Nature makes use of sweat evaporation from the skin to cool down our body. However, this strategy is effective as long as air is not saturated with water vapour. Our idea was to come up with a low-cost technology capable to maximize the cooling effect regardless of the external water vapour conditions. Instead of being exposed to air, pure water is in contact with an impermeable membrane that keeps separated from a highly concentrated salty solution. The membrane can be imagined as a porous sieve with pore size in the order of one millionth of a meter. Owing to its water-repellent properties, our membrane liquid water does not pass through the membrane, whereas its vapour does. In this way, the fresh and salt water do not mix, while a constant water vapour flux occurs from one end of the membrane to the other. As a result, pure water gets cooled, with this effect being further amplified thanks to the presence of different evaporation stages. Clearly, the salty water concentration will constantly decrease and the cooling effect will diminish over time; however, the difference in salinity between the two solutions can be continuously – and sustainably – restored using solar energy, as also demonstrated in another recent study from our group**”, explains Matteo Alberghini, PhD student of the Energy Department of the Politecnico di Torino and first author of the research.

The interesting feature of the suggested device consists in its modular design made of cooling units, a few centimetres thick each, that can be stacked in series to increase the cooling effect in series, as happens with common batteries. In this way it is possible to finely tune the cooling power according to individual needs, possibly reaching cooling capacity comparable to those typically necessary for domestic use. Furthermore, water and salt do not need pumps or other auxiliaries to be transported within the device. On the contrary, it “moves” spontaneously thanks to capillary effects of some components which, like in kitchen paper, are capable of absorbing and transporting water also against gravity.

“Other technologies for passive cooling are also being tested in various labs and research centres worldwide, such as those based on infrared heat dissipation into the outer space – also known as radiative passive cooling. Those approaches, although promising and suitable for some applications, also present major limitations: the principle on which they are based may be ineffective in tropical climates and in general on very humid days, when, however, the need for conditioning would still be high; moreover, there is a theoretical limit for the maximum cooling power. Our passive prototype, based instead on evaporative cooling between two aqueous solutions with different salinities, could overcome this limit, creating a useful effect independent of external humidity. Moreover, we could obtain an even higher cooling capacity in the future by increasing the concentration of the saline solution or by resorting to a more sophisticated modular design of the device” commented the researchers.

Also due to the simplicity of the device assembly and the required materials, a rather low production cost can be envisioned, in the order of a few euros for each cooling stage. As such, the device could be ideal for installations in rural areas, where the possible lack of well-trained technicians can make operation and maintenance of traditional cooling systems difficult. Interesting applications can also be envisioned in regions with large availability in water with high saline concentration, such as coastal regions in the vicinity of large desalination plants or nearby salt marshes and salt mines.

As of now, the technology is not yet ready for an immediate commercial exploitation, and further developments (also subject to future funding or industrial partnerships) are necessary. In perspective, this technology could be used in combination with existing and more traditional cooling systems for effectively implementing energy saving strategies.

###

[*] Matteo Alberghini, Matteo Morciano, Matteo Fasano, Fabio Bertiglia, Vito Fernicola, Pietro Asinari, Eliodoro Chiavazzo. Multistage and passive cooling process driven by salinity difference, SCIENCE ADVANCES (2020), URL: https://advances.sciencemag.org/content/6/11/eaax5015

[**] Eliodoro Chiavazzo, Matteo Morciano, Francesca Viglino, Matteo Fasano, Pietro Asinari, Passive solar high-yield seawater desalination by modular and low-cost distillation, NATURE SUSTAINABILITY (2018), URL: https://www.nature.com/articles/s41893-018-0186-x

Advertisements
The Most Severe Threat Facing MENA

The Most Severe Threat Facing MENA

Nabil Fahmy in The Most Severe Threat Facing MENA, this Winter 2020, looks at all imponderable issues that the region faces to its water supply. The author failed, however, to invoke anything about the works that are underway of 22 dams upstream on the Tigris and Euphrates rivers.


Water scarcity is one of the most pressing issues facing the international community today and has gained widespread attention recently due to the rise in global temperatures and the increase in water consumption in a number of countries, especially those in the Middle East. Despite these concerns, many nations remain unprepared to confront water scarcity and continue to fail to make the issue a political priority.

The shortage of water in the Middle East has worsened in the modern era due to high population growth rates, urbanization and the expansion of cities, the low price of water, and inefficient water management. These factors have created an unstable—and extremely dangerous—situation, which will impact the availability of water and risk exacerbating tensions between countries in the region.

The UN Intergovernmental Panel on Climate Change has predicted that the Middle East and North Africa (MENA) will be among the regions most impacted by global warming in the twenty-first century through a heightened risk of drought and flood, which will reduce agricultural productivity, impact food stocks, and harm the most disadvantaged of the population.

About 5 percent of the world’s population lives in the MENA region, which contains only 1 percent of the world’s renewable fresh water. Water was available to citizens at an annual rate of 819.8 cubic meters per capita as recently as a few years ago, which is more than 25 percent less than the global average. Meanwhile, 60 percent of the region’s population lives in areas suffering from surface water shortages, while the global average stands at about 35 percent. Despite the region’s scarcity of water, MENA has the world’s lowest water tariffs and the highest percentage of GDP spent on water subsidies. This has led to irrational use of water resources and over-pumping of non­renewable groundwater. These are striking examples of both poor water management and the region’s lack of appreciation of the urgency of this issue.

Groundwater, large transboundary rivers, and desalination represent the main sources of water in the region, according to a report from the World Bank. These sources are all either points of dispute between countries in the region, threatened by excessive use, or too costly to develop. As a result, the countries of the Middle East continue to suffer from an acute lack of water security, which is defined as “the availability of an acceptable quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies.” In other words, achieving water security is not limited to maintaining high water reserves, but also involves taking into account productive and preventive initiatives to deal with water needs and related issues. Countries that underestimate the importance of water security are squandering opportunities for economic, political, and social prosperity for their citizens.

This is because water security is directly linked to food security, energy, and irrigation inefficiency. The lack of available water impacts agricultural land and leads to an excessive dependence on food imports to meet the demands of the population. The countries of the Arab World import between 30 and 35 percent of their food resources. Egypt and China are among the largest importers of wheat in the world, despite the fact that China’s population is ten times larger. The higher the national dependence on basic food imports, the greater the risk associated with turmoil in global markets. In this way, protecting national security and achieving stability becomes difficult if water and food security needs are not addressed.

This is not exaggeration or fear mongering, but rather a warning about one of the most severe threats facing the MENA region—I do not rule out the possibility of this becoming a cause or justification for conflict—and a call for leaders to change policies. Policymakers can reach a solution to this crisis if there is political will.

For example, irrigation efficiency in the MENA region hovers at 50 percent, but if efficiency was raised to 70 percent through changes to policies and practices, huge benefits could be achieved. These include providing fifty billion cubic meters of water to the Middle East annually, which would allow countries to significantly increase grain production and work to find more sustainable ways to conserve water and produce food.

Water scarcity is a possible precursor to regional and potentially international conflict, and preemptive action must be taken to prevent this. Egypt, Ethiopia, and Sudan have been embroiled in a dispute related to water security and are striving to reach a consensual agreement in this regard that is both sustainable and implementable. The Nile River provides Egypt with 75 percent of its water needs, which are set to increase given population growth rates, and issues related to water security in the country are set to worsen. Ethiopia will soon begin the process of filling a lake connected to the Renaissance Dam, which is part of the largest hydroelectric power station in Africa. Egyptian anxiety and frustration at the slow pace of negotiations and the failure of talks thus far are made clear in Egypt’s public statements and talk about “red lines,” as well as in its seeking to call an international mediator to help resolve the dispute.

Another potential regional conflict lies in water disputes between Palestine and Israel, even if the political conflict is resolved, which remains unlikely. Israel controls the head of the Jordan River, which restricts access to water for Palestinians, and aquifers are also under the control of the Israeli government. This leaves Palestinians with a limited amount of water. United Nations Development Programme reports indicate that Palestinians have access to about three hundred million cubic meters of water annually, while Israelis enjoy about two thousand million cubic meters. Such a disproportionate and inequitable allocation of water resources sows the seeds of future conflict.

A sensitive and potentially dangerous issue like water insecurity in the MENA region requires sincere analysis and an honest warning about its possible impacts. If politicians, scientists, and economists work together to address water insecurity rather than ignoring the issue, we can prevent possible conflict over access to water in the region.

Translated by Madeleine Hall

Raising crops in PV facades of buildings

Raising crops in PV facades of buildings

An international research group has analyzed the visual impact of PV facades on buildings which include crop cultivation. Architects, PV specialists and farmers were surveyed and the results showed broad acceptance of such projects. The ‘vertical farming’ survey generated suggestions for the design of productive facades. So here is Raising crops in PV facades of buildings by Emiliano Bellini.


February 19, 2020

An international research team including scientists from Cuba’s Technological University of Havana and the National University of Singapore has investigated the potential of integrating PV facades with ‘vertical farming’ on buildings in densely-populated cities.

According to findings presented in the study Architectural quality of the productive façades integrating photovoltaic and vertical farming systems: Survey among experts in Singapore, published in Frontiers of Architectural Research, there is broad acceptance for projects combining crop cultivation and solar power generation – which the researchers defined as “productive facades (PF)” – despite concerns over architectural integration.

Web survey

The researchers conducted anonymous 10-minute, multiple-choice web surveys in English with 15 questions. The group also provided images of four variants of productive facade, with respondents asked to rate their architectural quality on a scale of one to five.

The questions addressed topics including the visual impact of PV modules and crops, preferences about the arrangement of PV modules and ease of operation for owners and workers. Around 80% of the 97 respondents were architects with the remainder engineers, PV specialists, productive facade experts, horticulturalists, solar facade professionals, consultants and other professionals.

Architectural concerns

The results indicated architects and designers gave low ratings to all four of the designs presented and rated the design of PV installation poor. However, respondents with experience in horticulture, farming and PV facades showed stronger acceptance of building-integrated productive facades. “All groups of experts agree that PFs have the most positive effect on the exterior facade design and have accordingly graded them with higher marks than the designs without PV and VF [vertical farming] systems,” the paper noted.

Concerns were expressed by almost all respondents about the logistics of crop cultivation and irrigation near electronic devices such as the vertical solar modules.

“Several comments recommended exploring more creative designs,” the researchers added.

The lowest rating – 2.84 – was given to a productive facade with only PV modules visible from the inside. The highest mark – 3.9 – was scored by the image in which only plants were visible.

Tips for developers

The study also generated recommendations for the improvement of productive facade prototypes. “It should be noted that the selection of elements for practical application cannot be made based on a single isolated PF element – the entire building should be considered, especially the aesthetic elements of the building envelope, such as composition, proportion, rhythm, transparency, scale, colors and materials,” the researchers stated.

The study’s authors recommended the installation of the PV systems on north and south-facing facades, with ceiling level a preferable location.

Tilt angles of less than 20 degrees were suggested as a better aesthetic solution which would also avoid reflection onto neighboring buildings. “However, a well-designed integration of the PV modules with the planter of the above storey provides additional advantages – it improves the quality of indoor daylight and obstructs the view from inside to a lesser degree,” the study stated.

The researchers added copper indium gallium selenide (CIGS) panels were preferred to crystalline silicon modules, due to their more homogeneous structure.

Emiliano Bellini

Emiliano joined pv magazine in March 2017. He has been reporting on solar and renewable energy since 2009.

emiliano.bellini@pv-magazine.com

More articles from Emiliano Bellini

Read more on:

Buildings kill millions of birds. Here’s how to reduce the toll

Buildings kill millions of birds. Here’s how to reduce the toll

In Reach for the Sky—Wood Frame Building Will Be 35 Stories, there was no question about any other matter such as the possibility of these buildings killing birds and in this case, how to reduce this eventuality. To dutifully fill that gap, here is Norman Day, of Swinburne University of Technology who informs that Buildings kill millions of birds. Here’s how to reduce the toll.

Buildings kill millions of birds. Here’s how to reduce the toll


Buildings kill millions of birds. Here's how to reduce the tol
These birds were killed by flying into a set of surveyed buildings in Washington DC in 2013. USGS Bee Inventory and Monitoring Lab/Flickr

As high-rise cities grow upwards and outwards, increasing numbers of birds die by crashing into glass buildings each year. And of course, many others break beaks, wings and legs or suffer other physical harm. But we can help eradicate the danger by good design.

Most research into building-related bird deaths has been done in the United States and Canada, where cities such as Toronto and New York City are located on bird migration paths. In New York City alone, the death toll from flying into buildings is about 200,000 birds a year.

Across the US and Canada, bird populations have shrunk by about 3 billion since 1970. The causes include loss of habitat and urbanisation, pesticides and the effects of global warming, which reduces food sources.

An estimated 365 million to 1 billion birds die each year from “unnatural” causes like building collisions in the US. The greatest bird killer in the US remains the estimated 60-100 million free-range cats that kill up to 4 billion birds a year. Australia is thought to have up to 6 million feral cats.


Read more: For whom the bell tolls: cats kill more than a million Australian birds every day


But rampant global urbanisation is putting the reliance on glass buildings front-of-stage as an “unnatural” cause of bird deaths, and the problem is growing exponentially.

In the line of flight

Most birds fly at around 30-50km/h, with falcons capable of up to 200km/h. When migrating, birds generally spend five to six hours flying at a height of 150 metres, sometimes much higher.

And that’s where the problems start with high-rise buildings. Most of them are much taller than the height at which birds fly. In Melbourne, for example, Australia 108 is 316 metres, Eureka 300 metres, Aurora 270 metres and Rialto 251 metres. The list is growing as the city expands vertically.

The paradigm of high-rise gothams, New York City, has hundreds of skyscrapers, most with fully glass, reflective walls. One World Trade is 541 metres high, the 1931 Empire State is 381 metres (although not all glass) and even the city’s 100th-highest building, 712 Fifth Avenue, is 198 metres.

To add to the problems of this forest of glass the city requires buildings to provide rooftop green places. These attract roosting birds, which then launch off inside the canyons of reflective glass walls – often mistaking these for open sky or trees reflected from behind.

Buildings kill millions of birds. Here's how to reduce the tol
Reflections of trees and sky lure birds into flying straight into buildings. Frank L Junior/Shutterstock

A problem of lighting and reflections

Most cities today contain predominantly glass buildings – about 60% of the external wall surface. These buildings do not rely on visible frames, as in the past, and have very limited or no openable windows (for human safety reasons). They are fully air-conditioned, of course.


Read more: Glass skyscrapers: a great environmental folly that could have been avoided


Birds cannot recognise daylight reflections and glass does not appear to them to be solid. If it is clear they see it as the image beyond the glass. They can also be caught in building cul-de-sac courtyards – open spaces with closed ends are traps.

At night, the problem is light from buildings, which may disorientate birds. Birds are drawn to lights at night. Glass walls then simply act as targets.

Some species send out flight calls that may lure other birds to their death.

Buildings kill millions of birds. Here's how to reduce the toll
White-throated Sparrows collected in a University of Michigan-led study of birds killed by flying into buildings lit up at night in Chicago and Cleveland. Roger Hart, University of Michigan/Futurity, CC BY

Read more: Want to save millions of migratory birds? Turn off your outdoor lights in spring and fall


We can make buildings safer for birds

Architectural elements like awnings, screens, grilles, shutters and verandas deter birds from hitting buildings. Opaque glass also provides a warning.

Birds see ultraviolet light, which humans cannot. Some manufacturers are now developing glass with patterns using a mixed UV wavelength range that alerts birds but has no effect on human sight.

New York City recently passed a bird-friendly law requiring all new buildings and building alterations (at least under 23 metres tall, where most fly) be designed so birds can recognise glass. Windows must be “fritted” using applied labels, dots, stripes and so on.

The search is on for various other ways of warning birds of the dangers of glass walls and windows.

Combinations of methods are being used to scare or warn away birds from flying into glass walls. These range from dummy hawks (a natural enemy) and actual falcons and hawks, which scare birds, to balloons (like those used during the London Blitz in the second world war), scary noises and gas cannons … even other dead birds.

Researchers are using lasers to produce light ray disturbance in cities especially at night and on dark days.

Noise can be effective, although birds do acclimatise if the noises are produced full-time. However, noise used as a “sonic net” can effectively drown out bird chatter and that interference forces them to move on looking for quietness. The technology has been used at airports, for example.

A zen curtain developed in Brisbane has worked at the University of Queensland. This approach uses an open curtain of ropes strung on the side of buildings. These flutter in the breeze, making patterns and shadows on glass, which birds don’t like.

These zen curtains can also be used to make windows on a house safer for birds. However, such a device would take some doing for the huge structures of a metropolis.

More common, and best adopted at the design phase of a building, is to mark window glass so birds can see it. Just as we etch images on glass doors to alert people, we can apply a label or decal to a window as a warning to birds. Even using interior blinds semi-open will deter birds.

Birds make cities friendlier as part of the shared environment. We have a responsibility to provide safe flying and security from the effects of human habitation and construction, and we know how to achieve that.


This article has been updated to correct the figure for the estimated number of birds killed by the cats in the US to “up to 4 billion”, not 4 million.

Norman Day, Lecturer in Architecture, Practice and Design, Swinburne University of Technology

This article is republished from The Conversation under a Creative Commons license.

Siemens transforms buildings from passive to adaptive

Siemens transforms buildings from passive to adaptive

In a Press Release on 6 February 2020, Siemens transforms buildings from passive to adaptive as elaborated on below.


At this year’s Light+Building trade fair, Siemens will showcase its vision for transforming today’s passive buildings into learning and adaptive environments that intelligently interact with people. The company’s focus at this year’s show is “Building the future today”, outlining the innovations that will make this possible. These include cloud-based technologies, digital planning, occupant-centric building automation and services. New solutions for smart electrical infrastructure that seamlessly connects to the Internet of Things (IoT) are also at the core of this transformation. 

Siemens transforms buildings from passive to adaptive

„Building the future today”: Siemens at Light+Building 2020 in hall 11, booth B56“Around 99 percent of today’s buildings are not smart. Digitalization has the power to transform buildings from silent and passive structures into living organisms that interact, learn from and adapt to the changing needs of occupants. This is a significant leap in the evolution of buildings where our technology plays a vital role,” said Cedrik Neike, Member of the Managing Board of Siemens AG and Chief Executive Officer of Siemens Smart Infrastructure. “This transformation is already becoming a reality. We expect to see the first entirely self-adaptive buildings in three to five years from now.”

Digital solutions for the entire building lifecycle

Globalization, urbanization, climate change, and demographics are changing the way people live and work. At the same time, digitalization is ubiquitous. With some 10 billion building devices already connected to the IoT, buildings are ready to leverage the potential of digitalization. People spend an estimated 90 percent of their lives indoors, so ensuring buildings meet the broad range of individuals’ needs is crucial. On one hand, smart buildings actively contribute to occupants’ enhanced productivity, wellbeing and comfort. For operators and owners, they help them collect and analyze data to create actionable insights, boosting buildings’ performance and therefore revenue.Siemens will showcase the smart buildings suite of IoT enabled devices, applications and services. At the core of the suite is the “Building Twin” application, which will be on display at the booth. It provides a fully digital representation of a physical building, merging static as well as dynamic data from multiple sources into a 3D virtual model. With real-time understanding of how a building is performing, operators can immediately make adjustments to boost efficiency as well as extract data to improve the design of future buildings. One of the new IoT-enabled applications is “Building Operator”, which allows remote monitoring, operation and maintenance of buildings. Available as Software as a Service (SaaS), it provides real-time building data as the basis for predictive and corrective maintenance.

Smart electrical infrastructure

Given that buildings account for more than 40 percent of electricity consumption in cities, building efficiency is crucial in the battle towards decarbonization. Electrical infrastructure lays the foundation for safe, reliable and efficient building operations, while delivering essential data for a holistic, cloud-based building management. This is made possible by communication-capable low-voltage products, power distribution boards and busbar trunking systems that enable the measurement and wireless transmission of energy and status data. To illustrate this, Siemens will exhibit a unique end-to-end solution for cloud-based power monitoring in buildings. Electrical installations can now be supplemented with digital metering without additional space requirements or wiring outlay. This makes it easy for electrical installers to start using digitalization to their benefit. With “Powermanager”, a power monitoring software, now fully integrated into the Desigo CC building management platform, all building and energy data can be managed, monitored and analyzed from one single platform.Siemens will also display its electromobility ecosystem, including battery storage and charging systems for residential buildings. In a parallel show, “Intersec Building 2020”, in hall 9.1, booth B50, the company will exhibit integrated and networked systems for safety and fire protection.  

For further information on Siemens Smart Infrastructure, please see
www.siemens.com/smart-infrastructure

For further information about Siemens at Light+Building 2020, please see
www.siemens.com/press/lightbuilding-2020

Reach for the Sky—Wood Frame Building Will Be 35 Stories

Reach for the Sky—Wood Frame Building Will Be 35 Stories

Sidewalk Labs prototype would be the world’s tallest wood-frame building. That is good to know but Reach for the Sky—Wood Frame Building Will Be 35 Stories by Roopinder Tara posted on January 28, 2020, could seriously be envisaged if the world were to be limited to the northern as well as to the Equatorial zones where forestry abounds. Transporting however wooden building materials from and/or to any other area of the world would probably cancel any significant environmental benefits.


Look closely—it’s made of wood. Exterior rendering of office and residential levels of Proto-Model X, Sidewalk Labs’ model of a timber frame destined for the Toronto waterfront. (Image courtesy of Michael Green Architecture and Gensler.)
Look closely—it’s made of wood. Exterior rendering of office and residential levels of Proto-Model X, Sidewalk Labs’ model of a timber frame destined for the Toronto waterfront. (Image courtesy of Michael Green Architecture and Gensler.)

Given that wood is flammable and biodegradable, it may never have been an ideal building material. We have steel for that. However, in many parts of the world, wood is available in abundance, so it is pressed into service for our buildings. Wood framing is common in North America for residential buildings but less so for commercial buildings. Wood framing has largely been unheard for use in high rises—until today, when plans of a 35-story wood frame skyscraper, part of Sidewalk Labs development project in Toronto, popped into my inbox.

No building this tall has ever been built with a wood frame. It’s not even close. The current tallest wood-frame building is Norway’s 85.4m-tall Mjøstårnet. The second tallest is the 53m-tall Brock Commons Tallwood House in Vancouver. Both buildings are 18 stories.

Sidewalk Labs has a digital model, a proof of concept it calls the PMX Tower (Proto-Model X). There’s a lot to be worked out when making a wooden building this tall.

Engineering Wood

Looks like the real thing because it mostly is. Mass wood, an engineered structural material, can pass for normal wood—at a distance. (Image courtesy of HGA.)
Looks like the real thing because it mostly is. Mass wood, an engineered structural material, can pass for normal wood—at a distance. (Image courtesy of HGA.)

The PMX plans do not call for using plain, ordinary wood, but “mass wood,” or a wood-mostly material that when glued together is called “glulam” and is used for ultra-long beams and columns. It is called nail laminated timber (NLT), and the plywood-like cross-laminated timber (CLT), which is used for floor and roof decks as well as bearing walls. Mass wood can be made fire resistant with the addition of chemical fire retardants, though this certainly makes the material less green. Mass wood’s manufacturers claim that the carbon emissions produced from making it are far less than the emissions created in making of steel or concrete—though cutting down trees is hardly green. Mass wood looks better than steel or concrete. We cannot argue with that. Plans for PMX call for a wooden external skeleton. (Image  courtesy of medium.com.) Plans for PMX call for a wooden external skeleton. (Image courtesy of medium.com.)

With a much lower strength-to-weight ratio than steel, wood of any type poses special challenges. But with a Sidewalk Labs team dead set on sustainability, a steel frame and concrete curtain walls were a nonstarter. Still, duplicating the same type of frame used in steel and concrete construction with wood would have resulted in ridiculously massive structural elements. A “timber core” design would have walls 5-feet thick. Not only would walls this thick require too many trees, they would also be difficult to manufacture and ship. In addition, they would take up too much floor space. PMX is going with a design that uses a wooden “exoskeleton” consisting of diagonal bracing and vertical columns on the outside of the building that support a 10-inch-thick “lean wood core.”

The BIM was done with Autodesk Revit and is hosted on BIM 360, a cloud-based construction management application.

A Counterintuitive Counterweight

A concrete and steel tower would be 2.5 times as heavy as a wooden skyscraper. But whereas light weight is an asset in aircraft and rockets that seek to escape gravity, it can be a liability in buildings that need to stay put. Preliminary analysis showed the 35-story wood frame construction had as much deflection in the wind as a 40- to 50-story building constructed with a steel frame.

With the addition of a tuned mass damper, the PMX tower model stabilizes quicker. A gust of wind would make the towers bend to one side, then oscillate. Without losses, the tower would oscillate forever, but internal dampening would cause the structure to stop eventually. A tuned mass dampener would add more losses and make the tower stop swaying sooner. Note that in the model shown the dampener would only reduce swaying from right and left, but not back and forth. (Image courtesy of Gensler, Aspect.)

The PMX team found that it had to allow a lot of steel into the design—in the form of a 70-ton steel weight, part of a system that is designed to dampen vibration.

While it may seem counterintuitive—perhaps even dangerous—to have massive weight on top of a building, that is exactly what civil engineers may order for a tall building that is swaying too much or is expected to do so. Tall buildings can have deflections of several feet on their top floors—unsettling and even sickening their occupants. A tuned mass dampener (TMD) system, can be designed in or retrofitted. A TMD with a precisely calculated amount of mass made of concrete, steel, lead or other dense material stays still due to its own inertia when a tall building initially bends— as a result of the ground shaking or a gust of wind. Dampeners attached to the mass absorb the energy and act to limit the number of oscillations.

Chicken Little would not approve. An 18-ft diameter, 660-metric ton steel sphere, which hangs like a pendulum and is visible between the 88th and 92nd floors of Taipei 101 in Taiwan, is a tuned mass damper (TMD) that reduces the swaying of tall buildings. (Image courtesy of Pinterest.)
Chicken Little would not approve. An 18-ft diameter, 660-metric ton steel sphere, which hangs like a pendulum and is visible between the 88th and 92nd floors of Taipei 101 in Taiwan, is a tuned mass damper (TMD) that reduces the swaying of tall buildings. (Image courtesy of Pinterest.)

TMD systems have been around for some time, but the increase in super tall and very thin tall buildings has made them even more sought after. Shanghai, New York and Dubai have several buildings with TMDs. Taiwan’s Taipei 101 tower uses a system that makes its TMD, with a suspended golden ball, a visible design feature.

The Canadian National Tower, at one time the tallest structure in North America at 102m, also in Toronto’s downtown, has two doughnut-shaped steel rings, one at 488m and the other at 503m—each weighing 9 metric tons—that serve as TMDs. They are tuned to the 2nd and 4th mode shape of the tower, while the 1st and 3rd mode are controlled by the prestressed concrete and don’t require additional damping.

Boston’s John Hancock Tower had two 30-ton sliding dampers installed retroactively that were designed to reduce the building’s sway by 40 percent to 50 percent.

TMDs can take several forms, including sliding, rolling or swinging weights.

Not Your Parents Prefab

Mechanical, electrical and plumbing equipment is embedded in a floor panel off-site in a factory. (Image courtesy of Integral.)
Mechanical, electrical and plumbing equipment is embedded in a floor panel off-site in a factory. (Image courtesy of Integral.)

As much as possible, the PMX designer sought to make the building off-site in parts, and then assemble the parts on-site. This is the long sought-after advantage manufacturing has enjoyed, while construction has lagged behind. PMX is making staircases, floor panels, walls, and kitchen and bathroom “pods” standard and assembled in assembly lines, transporting them to the waterfront site on trucks, and then snapping them together … like Legos, according to this article. These “cassettes,” as the sub-assemblies are called, will be made in 25 steps, with each step estimated to take 25 minutes. It is assembly line techniques at work, rather than the painstaking, laborious, material wasting current practice of laying floors, pouring concrete, joining gigantic steel members, and so on, that is the common conventional construction trade practice.

In addition to busting out of age-old construction practices, the PMX also hopes to bust out of the lowly status that prefab construction can’t seem to shake, like a screw-top wine. The plan’s exoskeleton can be draped in any manner of dress and color—a far cry from the welcome to middle-class, prefab homes in cookie cutter neighborhoods that gave prefab a low-class status.

Sidewalk Toronto

Sidewalk Labs has a $1.3 billion project to develop Quayside, a 12-acre area in Toronto on the banks of Lake Ontario. Sidewalk Labs, part of Alphabet Inc., which also owns Google, was formed to create communities “from the Internet up.” When complete, Sidewalk Toronto would potentially bring 44,000 jobs, many of them tech jobs, to Toronto’s downtown. It was to be a test bed for technology close to city scale, including roads especially designed for autonomous vehicles. But the proposal may have represented too much technology for Toronto’s residents. Sidewalk Labs plans to pool and make public “urban data” gathered from those who were in Sidewalk Toronto. The city will be voting on whether to move forward with the Sidewalk Labs proposal.

How fungi can help create a green construction industry

How fungi can help create a green construction industry

Ian Fletcher, Leeds Beckett University in How fungi can help create a green construction industry wrote:

The world of fungi has attracted a lot of interest and seems to be becoming very fashionable of late. A new exhibition at Somerset House in London, for example, is dedicated to “the remarkable mushroom”. No surprise: we’re being promised that mushrooms may be the key to a sustainable future in fields as diverse as fashion, toxic spill clean ups, mental health and construction. It’s in this last field that my own interests lie.

How fungi can help create a green construction industry
Hy-Fi, The Living, MoMA. Jessica Sheridan/Flickr, CC BY-SA

Climate change is the fundamental design problem of our time: buildings are hugely complicit in the crisis. Together, buildings and construction contribute 39% of the world’s carbon footprint. Energy used to heat, cool and light buildings accounts for 28% of these emissions: households are the biggest emitter of greenhouse gases since 2015, accounting for a quarter of total UK greenhouse gas emissions in 2017.

The remaining 11% of buildings’ carbon emissions consists of those associated with construction and building materials. The UK construction industry, for example, uses around 400 million tonnes of materials each year and approximately 100 million tonnes become waste. Cement alone is responsible for a whopping 8% of global CO₂ emissions. Compare this to the much maligned global aviation industry, which emits 2% of all human-induced CO₂ emissions. Buildings and, by association, the construction industry, are profoundly responsible for climate change.

How fungi can help create a green construction industry
Cement – the key ingredient of concrete – is responsible for an astonishing 8% of all carbon emissions. Ricardo Gomez Angel/Unsplash, FAL

There is evidently a real need for the construction industry to reduce the impact of its material and energy use and to take part in the transition towards a more sustainable economy by researching and using alternative materials. This is not an absurd ask: such materials already exist.

Mushroom materials

And yes, one such material happens to be derived from fungi: mycelium composites. This material is created by growing mycelium – the thread-like main body of a fungus – of certain mushroom-producing fungi on agricultural wastes.

Mycelium are mainly composed of a web of filaments called “hyphae”, which acts as a natural binder, growing to form huge networks called “mycelia”. These grow by digesting nutrients from agricultural waste while bonding to the surface of the waste material, acting as a natural self-assembling glue. The entire process uses biological growth rather than expensive, energy intensive manufacturing processes.

How fungi can help create a green construction industry
Close-up image of mycelium showing interwoven fine hyphae. © Ian Fletcher

Mycelium materials offer an exciting opportunity to upcycle agricultural waste into a low-cost, sustainable and biodegradable material alternative. This could potentially reduce the use of fossil fuel dependant materials. The materials are low-density, making them very light compared to other materials used in construction. They also have excellent thermal and fire resistant properties.

Fungal architecture

To date, mycelium materials have been used in a number of inventive ways in building projects. One particular company of note is The Living, a New York based architectural firm which designed an organic mycelium tower known as “Hy-Fi” in the courtyard of MoMA’s PS1 space in midtown Manhattan. Designed as part of MoMA’s Young Architects Program, the structure illustrates the potential of this biodegradable material, in this case made from farm waste and cultured fungus grown in brick-shaped moulds.

How fungi can help create a green construction industry
Mae Ling Lokko, Mushroom Panels and Pentagram interactive work. Part of Somerset House exhibition: Mushrooms The Art Design and Future of Fungi. © Mark Blower

Another project of note is MycoTree, a spatial branching structure made out of load-bearing mycelium components. This research project was constructed as the centrepiece for the “Beyond Mining – Urban Growth” exhibition at the Seoul Biennale of Architecture and Urbanism 2017 in Seoul, Korea. The project illustrates a provocative vision of how building materials made from mycelium can achieve structural stability. This opens up the possibility of using the material structurally and safely within the construction industry.

Mycelium materials have also been analysed for uses ranging from acoustic absorbers, formed packaging materials and building insulation. And NASA is currently researching using mycelium to build habitable dwellings on Mars.

Recycled buildings

I am investigating the development of mycelium materials using locally sourced materials such as wheat straw. Wheat straw is a cheap and abundant source of waste in the Yorkshire region, so would be a fantastic raw material for construction. My main objective is to develop a material for use in non-load bearing applications, such as internal wall construction and façade cladding. The material displays similar structural properties to those of natural materials like wood.

How fungi can help create a green construction industry
Close-up image of mycelium of P. ostreatus growing around wheat straw. © Ian Fletcher, Author provided

The development of mycelium materials from locally sourced agricultural waste could reduce the construction industry’s reliance on traditional materials, which could improve its carbon footprint. Mycelium composite manufacturing also has the potential to be a major driving force in developing new bioindustries in rural areas, generating sustainable economic growth while creating new jobs.

The construction industry is faced with a choice. It must be revolutionised. If we carry with business as usual, we must live with the potentially catastrophic consequences of climate change.


Click here to subscribe to our climate action newsletter. Climate change is inevitable. Our response to it isn’t.

Ian Fletcher, Senior Lecturer in Architecture, Leeds Beckett University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate action shouldn’t mean choosing

Climate action shouldn’t mean choosing

Climate action shouldn’t mean choosing between personal and political responsibility

Can your individual behaviour make a real difference to the environment? And should you be expected to voluntarily change your life in the face of our worsening environmental crises? Some argue this emphasis on personal responsibility is a distraction from the real culprits: companies and governments.

Climate action shouldn't mean choosing
Montreal climate march, September 27 2019. Maria Merlos/Shutterstock

Joost de Moor, Stockholm University; Brian Doherty, Keele University, and Philip Catney, Keele University

We often treat the decisions to find alternative ways of living more sustainably and to pursue political resistance against big polluters and inactive governments as separate. But our recent research found that the relationship between alternatives and resistance is really far more complex. One can often lead to the other.

Previous studies have shown that taking individual responsibility for the environment or developing green alternatives often go hand in hand with political action. Our research suggests that this relationship can form over time, and that when people change their lifestyles for environmental reasons this can galvanise their political action more generally. But we also found that this doesn’t always happen and that bringing the two together can be difficult.

Our first study, carried out with Soetkin Verhaegen of UCLouvain in Belgium, looked at the environmental actions of a group of over 1,500 politically interested Belgians between 2017 and 2018. We found that citizens who took individual actions such as buying ethical products, changing how they travelled or producing their own food or energy, became more politically active over time. This included interacting with political institutions (for example, contacting elected politicians) and other actions such as taking part in protests.

Our research suggests that taking individual responsibility for the environment increases your concern for it, which in turn motivates you to participate in other forms of action. While the effect was quite small, this seems to be good news for environmental movements. It shows that when people (at least the politically interested ones) can be motivated to adopt modest lifestyle changes, they can, in turn, become politically active in more a general sense.

Yet on a practical level, trying to encourage both individual alternatives and political resistance isn’t easy, as we found in our study of two organisations promoting local food and energy systems in Manchester in the UK. As well as having limited time, the organisations found political activism sometimes conflicted with their aim of promoting alternative lifestyle projects to the broadest possible audience. As one interviewee put it: “If we’re trying to influence the uptake of solutions, then being seen as the opposition … isn’t particularly productive.”

Climate action shouldn't mean choosing
The personal can become political. Paul McKinnon/Shutterstock

However, we’ve also seen how bringing alternatives and resistance together can be done, and that its success can depend on location. In a series of in-depth interviews with environmental organisers in Bristol, we found the activists strongly benefited from their city’s compact size and layout (when compared to Manchester). Being more likely to bump into people from other activist groups means that, according to one interviewee, “your socialising is political”.

The result was that activists in Bristol were better at maintaining relationships between different groups and at keeping the social side of activism going than in Manchester. This enabled a crossover of participants between the alternatives and resistance sides of the movement.

Some started growing their own food and ended up defending their allotments against urban developments. Others who were initially protesting against supermarkets ended up in a food-growing scheme.

Pursuing alternatives also helped sustain the resistance activities. This was both because the alternatives often involved a more positive experience and because they made it easier to point to viable solutions during environmental protests.

Increasing involvement

So from a campaigner’s point of view, there’s little evidence that promoting alternative lifestyle choices and political resistance are mutually exclusive. In fact, in many cases the two feed into each other in positive ways, especially in the form of spillover from participation in one form of action to another.

The effect we found was quite small and spillover will certainly not happen automatically. But that suggests there’s an important role for organisers to stimulate it further. Different organisations are needed to provide both personal and political activities and encourage more (and more diverse) people to get involved.

For most ordinary people concerned, the debate over the effectiveness of taking individual responsibility for the environment is likely to continue. Our research at least suggests that people motivating each other to take personal action doesn’t undermine a broader environmental project. But it’s still important for people to discuss what other action is needed, and to look for or even organise ways to put pressure on powerful actors to take their responsibility.


Click here to subscribe to our climate action newsletter. Climate change is inevitable. Our response to it isn’t.

Joost de Moor, Post-doctoral Researcher, Department of Political Science, Stockholm University; Brian Doherty, Professor of Political Sociology, Keele University, and Philip Catney, Senior Lecturer in Politics, Keele University

Future direction of rain enhancement research reviewed

Future direction of rain enhancement research reviewed

The 4th International Rain Enhancement Forum (IREF) that brought together leading experts, scientists and researchers from all over the world was held in Abu Dhabi this past week. It was about the latest research and innovation in rain enhancement science together with possible collaborations to address the challenge of global water stress. The Future direction of rain enhancement research reviewed was reported on by all local media.


Emirates News Agency (WAM) — 25 January 2020

The UAE Research Program for Rain Enhancement Science, UAEREP, hosted a workshop to update its solicitation document, which will define the future calls for research proposal submissions. The workshop built on the productive discussions that took place during the 4th International Rain Enhancement Forum and its various plenary sessions.

UAEREP organised the 4th International Rain Enhancement Forum from 19 to 21 January 2020 under the supervision of the National Center of Meteorology. The event convened prominent national and international experts, researchers, scientists, and stakeholders to highlight the latest scientific and technological advancements in rain enhancement.

The full-day event brought together leading scientists and experts in atmospheric research and technologies, and centered around two main themes: ‘Cloud to Ground Science: Identifying Knowledge Gaps’ and ‘New Approaches and Technologies for Rain Enhancement’.

Future direction of rain enhancement research reviewed

The session opened with a welcome speech by Alya Al Mazroui, Director of UAEREP, who outlined the programme’s purpose and ambitions.

Alya Al Mazroui said: “This workshop follows the successful fourth edition of the International Rain Enhancement Forum and the productive discussions we had over the course of the three days of intensive sessions and the Town Hall Meeting. The workshop is crucially important for our call for new research proposals and the shaping of the future direction of UAEREP’s research objectives.”

She added: “As we move forward with our efforts to enhance collaboration and seek viable solutions for global water stress, it is essential to build stakeholder consensus around our research goals and priorities to ensure the relevance and quality of proposals for the future of the our research program.”

Al Mazroui also revealed that the content of the new solicitation document will be shared publicly in mid-2020 as part of the call for research proposal submissions for the Program’s 4th cycle starting in 2021.

Participants at the workshop were provided with a detailed overview of UAEREP’s previous solicitation and management plan and the workshop structure by Dr. Richard Behnke, chair of UAEREP’s international reviewers committee.

In his presentation, Dr. Deon Terblanche, Weather and Climate Consultant at World Bank and former Director of Research at the World Meteorological Organization (WMO), highlighted the achievements and challenges of past UAEREP awardees, and the latest advances in precipitation enhancement research.

Dr. Deon Terblanche also chaired a session titled ‘Cloud to Ground Science: Identifying Knowledge Gaps’, covering key topics such as quantifying the evaporative loss between cloud-base and the surface, improving areal precipitation estimation through a combination of remote sense and ground-based measurements, and translating seeding effects on single storms into areal effects. Panelists also discussed inter-cloud interactions in a convective environment, rainfall-runoff-groundwater relationship and the impact of cloud seeding and environmental and ecological changes due to long-term cloud seeding.

The workshop also facilitated productive discussions around ‘New Approaches and Technologies for Rain Enhancement’. Chaired by Dr. Steve Griffiths, Senior Vice President for Research and Development at Khalifa University, the session provided an insight into the technologies for observing physical phenomena, data modeling, analysis, and evaluation and experimental design, technologies, and instrumentation.

Summarising workshop outputs, Dr. Robert Robinson, co-chair of the committee, outlined the key takeaways and observations from the workshop participants.

The outcomes of the IREF town hall meeting, which took place on 21 January under the theme of “Determining Future Directions for Rain Enhancement Research”, provided important input for the discussions during the workshop, and for the shaping of the new UAEREP solicitation and the research proposal calls.

WAM/Hatem Mohamed

Double the Share of Renewables in the ‘Decade of Action’

Double the Share of Renewables in the ‘Decade of Action’

The World Future Energy Summit opening today in Abu Dhabi, UAE is a global industry platform connecting business and innovation in energy, clean technology and efficiency for a sustainable future. Abu Dhabi based IRENA through its Press Release considers that Double the Share of Renewables in the ‘Decade of Action’ to Achieve Energy Transition Objectives.


Indeed, per the above, USD 10 trillion of fossil fuel investment must be redirected towards energy transformation by 2030.


Double the Share of Renewables in the ‘Decade of Action’

Abu Dhabi, United Arab Emirates, 12 January 2020 – The share of renewables in global power should more than double by 2030 to advance the global energy transformation, achieve sustainable development goals and a pathway to climate safety, according to the International Renewable Energy Agency (IRENA). Renewable electricity should supply 57 per cent of global power by the end of the decade, up from 26 per cent today.

A new booklet 10 Years: Progress to Action, published for the 10th annual Assembly of IRENA, charts recent global advances and outlines the measures still needed to scale up renewables. The Agency’s data shows that annual renewable energy investment needs to double from around USD 330 billion today, to close to USD 750 billion to deploy renewable energy at the speed required. Much of the needed investment can be met by redirecting planned fossil fuel investment. Close to USD 10 trillion of non-renewables related energy investments are planned to 2030, risking stranded assets and increasing the likelihood of exceeding the world’s 1.5 degree carbon budget this decade.

“We have entered the decade of renewable energy action, a period in which the energy system will transform at unparalleled speed,” said IRENA Director-General Francesco La Camera. “To ensure this happens, we must urgently address the need for stronger enabling policies and a significant increase in investment over the next 10 years. Renewables hold the key to sustainable development and should be central to energy and economic planning all over the world.”

“Renewable energy solutions are affordable, readily available and deployable at scale,” continued Mr La Camera. “To advance a low-carbon future, IRENA will further promote knowledge exchange, strengthen partnerships and work with all stakeholders, from private sector leaders to policymakers, to catalyse action on the ground. We know it is possible,” he concluded, “but we must all move faster.”

Additional investments bring significant external cost savings, including minimising significant losses caused by climate change as a result of inaction. Savings could amount to between USD 1.6 trillion and USD 3.7 trillion annually by 2030, three to seven times higher than investment costs for the energy transformation.

Falling technology costs continue to strengthen the case for renewable energy. IRENA points out that solar PV costs have fallen by almost 90 per cent over the last 10 years and onshore wind turbine prices have fallen by up half in that period. By the end of this decade, solar PV and wind costs may consistently outcompete traditional energy. The two technologies could cover over a third of global power needs. 

Renewables can become a vital tool in closing the energy access gap, a key sustainable development goal. Off-grid renewables have emerged as a key solution to expand energy access and now deliver access to around 150 million people. IRENA data shows that 60 per cent of new electricity access can be met by renewables in the next decade with stand-alone and mini-grid systems providing the means for almost half of new access.