Advertisements
Global Award for Sustainable Architecture

Global Award for Sustainable Architecture

Rima Alsammarae report on Middle East Architect of 9 April 2019 that “Jordanian architect and artist Ammar Khammash is a 2019 laureate of the Global Award for Sustainable Architecture, along with four other architects including Dr Werner Sobek, Ersen Gursel, Rozana Montiel and Jorge Lobos.” 

Jordanian architect Ammar Khammash wins Global Award for Sustainable Architecture

Jordanian architects, Ammar Khammash, Sustainable architecture, Architecture awards, Architects from the Middle East, Architects from Jordan

Created by architect and scholar Jana Revedin in 2006, the international award recognises five architects each year who have contributed to sustainable development and created innovative and participatory approaches to meet societal needs. 

Royal Academy for Nature Conservation in Jabal Ajloun, Jordan by Khammash Architects

According to the award’s website, Khammash was recognised for his dedication to interdisciplinary scientific research, as well as his artisanal and artistic approaches to architecture.

Khammash’s projects include the Wild Jordan Center, the Royal Academy for Nature Conservation, the Darat Al Funun workspace and the Columbia University Middle East Research Center in Amman, as well as the Church of the Apostles in Madaba. His approach involves the use of locally-sourced, natural materials to achieve context-relevant designs. 

The Middle East Modern Art Space in New Badr, Amman by Khammash Architects

“It appears that there is a growing international trend to put architecture back on the track of social and environmental responsibilities, and away from being a hostage of powerful visual output that publishes well in the media,” he said. “Our philosophy and methodology of approach is entirely based on the role of architecture in solving problems, finding creative ways to co-exist with the larger context, which includes society and nature.”

Currently finalising two ecolodges in Jordan (one in Yarmouk Reserve and the other on the hot spring of Al Himmeh in Mukhaibeh), Khammash and his team are also working on a number of competitions in Jordan and Saudi Arabia. He noted that the award will help him further his approach and convince clients who see things differently.

Heedan Visitors Center by Khammash Architects

“The recognition from this prestigious award will help me change the mentality of clients, politicians and students,” he said, “ensuring that architecture retains some degree of modesty and symbiotic relationship to people and nature, instead of overwhelming, overpowering and outsmarting the very reason we need to build for.”

Khammash will be speaking at the award’s symposium, to be held in Paris in May.

Ammar Khammash talks on CNN’s program “Inside the Middle East” about Feynan Eco-Lodge, designed by Khammash Architects, and which is one of the first Eco-Lodges in Jordan and the Middle East.
Watch the interview: Inside the Middle East
Advertisements
Progress in Greening the Global Construction Industry

Progress in Greening the Global Construction Industry

Noting some progress in greening the global construction industry, the United Nations environment agency (UNEP) co-released a report on Friday at the COP24 climate conference in Katowice, Poland, sounding the alarm on the need for “dramatic action” to reduce the sector’s greenhouse gas emissions.

“It’s critical we have a big change over the nextcouple of years in how we do buildings and construction”, said Joyce Msuya, Deputy Executive Director of UNEP. “We only need to look at the current norms andquality of many buildings to see that we can do so much better,” she said, emphasizing that “we need to raise the bar in energy-efficient, green buildings and far better practice in construction.”

COP24: Huge untappedpotential in greener construction, says UN environment agency

Currently, buildings account for close to 40 per cent of the world’s greenhouse gas emissions and 36 per cent of all energy consumption. In the report, which was co-authored by the International Energy Agency (IEA), UNEP warned that “dramatic action will be needed by governments, cities and business if the global buildings and construction sector is to cut its carbon footprint in line with international agreements.”

Titled ‘Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector’, the report was presented against the backdrop ofongoing COP24negotiations on how to move ahead with the implementation of the climate actionagreement adopted in Paris, in 2015, when 197 parties committed to limiting global warming to 1.5°C above pre-industrial levels.

The development of new techniques, tools, products and technologies – such as heat pumps, better windows, stronger insulation, energy-efficient appliances, renewable energy and smarter design – has enabled emissions to stabilize over the past few years.

There are other encouraging signs. Several property, construction, cement and steel-manufacturing firms are among the 500 companies (representing trillions of dollars in revenue) which have aligned their emission reduction targets with the Paris Agreement; and the 71-member private sector network, the World Green Building Council non-profit organisation, is advocating for all buildings to emit zero net emissions by 2050.

There is huge potential to reduce the current level of emissions, but action has been too slow, environmentalists say. To meet the goals of the Paris Agreement, the Global Alliance for Buildings and Construction, hosted by UNEP, is targeting a 30 per cent energy use improvement in the buildings and construction sector.

Buildings are ‘key driver of energy demand’

What will make things even more challenging, is that the number of new buildings is anticipated to grow rapidly in the coming years, especially in the urban areas of Africa and Asia.

“Buildings are a key driver of energy demand, and developments within the sector such asthe growing uptake of air conditioners are having a bigimpact on energy and environmental trends at the global level,” saidDr. Fatih Birol, Executive Director of the International Energy Agency, which is an autonomous intergovernmental organization.

If we don’t make buildings more efficient, their rising energy use will impact us all, whether it be through access to affordable energy services, poor air quality or higher energy bills –Dr. Fatih Birol

The new report highlights a major gap between the amount of money spent on energy efficient solutions and the rapidly growing amount invested in building construction and renovation. “If we don’t make buildings more efficient, their rising energy use will impact us all, whether it be through access to affordable energy services, poor air quality or higher energy bills,” warned Dr. Birol.

In particular, the data raises a red flag over the sharply rising demand for cooling systems and air conditioners; linked with improving living-standards in developing countries coupled with rising temperatures in many parts of the globe, due to climate change. Since 2010, the energy used by cooling systems has increased by 25 per cent and there are now more than 1.6 billion air conditioning units in service.

One of the commitments of the Paris Agreement isfor countries to develop and scale-up their own national climate action plans but, to date, only 104 plans mention specific actions to enhance energy-efficiency in buildings, building codes and energy certifications. Veryfew tackle the issue of construction materials – such as steel and cement – and the carbon emissions involved in their manufacturing.

Another area of action recommended by the report is the need for building standards to evolve towards buildings that are more resilient in the face of climate change and extreme weather events, such as storms and hurricanes, floods, high winds and soaring temperatures.

The Beauty Behind Energy-Efficient Buildings

The Beauty Behind Energy-Efficient Buildings

Sustainable Architecture: The Beauty Behind Energy-Efficient Buildings

November 10th, 2018 by The Beam 


As we enter a more environmentally-conscious age, we are inevitably building more ecologically responsible and sustainable cities. Creating buildings with the lowest possible energy consumption and carbon emission production, while still being aesthetically pleasing, is a challenge bringing together great minds to change the way we think about our living and working spaces. Here are some of our favorite sustainable architectural projects coming out of Shanghai, Paris, Dhaka, and Barcelona.

The green hill

Shanghai, a wealthy city of 24 million people, has a varied complexity serving as a microcosm that contains a lot of what modern China is all about. Shanghai is also the city where Thomas Heatherwick is building his ambitious vision with the 100 Trees Complex in Shanghai, an immense project that will cover 300,000 square meters and transcend the mere notion of being just another skyscraper block in the Chinese metropolis. When completed, the building will house schools, residences, retail units, offices and a hotel within its nine floors and three-story basement. It will also comprise over 400 terraces, many set with plant beds and trees, to enhance the “3D forest” effect and encourage outdoor meetings and recreation. The city’s residents are already calling it their version of the Hanging Gardens of Babylon, and we added it to our to-go list in 2018.

The vertical forest

France has swathes of vast woodlands, but not a single vertical forest. Italian architect Stefano Boeri aims to change this with his Forêt Blanche on the outskirts of Paris, a 54-meter-high tower fashioned from stacked wood and glass cubes with thickly planted edges. The facades of Forêt Blanche will be covered by 2000 trees, shrubs and plants, with a green surface equivalent to a hectare of forest, 10 times the surface area of the lot on which the building sits. Once finished, the site will host residential apartments on the high floors, offices and commercial services in the lower part, with a mix of terraces and balconies on the four sides of the tower. The east and west facing side will allow the passage of sunlight all day, giving natural illumination and ventilation to the apartments and an exceptional panorama on the landscape of central Paris.

The floating university

Among the densest megalopolises in the world, Dhaka’s rapid urbanization has resulted in the displacement of the city’s water bodies, vegetation, open and civic spaces by buildings and industries. Woha Architects will try to remedy this by building a floating university in the Bangladesh capital.

Sited on an urban lake, the vision is to present an innovative and sustainable inner city campus that exemplifies tropical design strategies in response to the hot, humid, monsoon climate of the region while demonstrating the sensitive integration of nature and architecture. Drawing inspiration from the Bengal basin’s Sundarbans mangrove forest that have separate ecosystems above and below tidal level, the design strategy is to create two distinct programmatic strata by floating the Academia above the lake and revealing a Campus Park below, thus reflecting the synergistic coexistence between mankind and mangrove. This approach minimizes the building’s footprint over the lake, and further maximizes space for facilities while opening up the ground level to activity generating interaction spaces and effective additional park land that creates an imageable milieu for a vibrant campus life.

Re-greening downtown Barcelona

If you have ever visited the Catalan capital, you know how warm, noisy, polluted, and busy it gets, especially in summer, when plenty of tourists visit to escape from their routine and catch up on some of the sun and brilliant Catalan atmosphere. The city has already proved its commitment to the environment, wanting now to move away from car hegemony and turn secondary streets into “citizen spaces” for culture, leisure and the community. The administration plans to create several micro projects that merge into green inner-city corridors by moving entire streets underground and banning cars from the center to create the necessary space for new parks. The city has even purchased industrial land for this goal of creating 108 hectares of new green space up to 2019. To involve the entire community, there are cash prizes for the most sustainable ideas from the citizens.

By The Beam Editor-in-Chief Anne-Sophie Garrigou

The Beam Magazine is a quarterly print publication that takes a modern perspective on the energy transition. From Berlin we report about the people, companies and organizations that shape our sustainable energy future around the world. The team is headed by journalist Anne-Sophie Garrigou and designer Dimitris Gkikas. The Beam works with a network of experts and contributors to cover topics from technology to art, from policy to sustainability, from VCs to cleantech start ups. Our language is energy transition and that’s spoken everywhere. The Beam is already being distributed in most countries in Europe, but also in Niger, Kenya, Rwanda, Tanzania, Japan, Chile and the United States. And this is just the beginning. So stay tuned for future development and follow us on Facebook, Twitter, Instagram and Medium.

Related Posts

The Alliance Shines In France — #CleanTechnica Electric Car Sales Report

By 2040, 54% of all new car sales will be for Electric

By 2040, 54% of all new car sales will be for Electric

According to Bloomberg, by 2040, 54% of all new car sales will be for Electric (EVs). Millions of them will then take a good portion out of oil demand and remove millions of barrels of transport fuel every day. It adds that the most significant factor in the EV surge is what’s under the hood, i.e. lithium-ion batteries.
An International Monetary Fund blog post by Christian Bogmans and Lama Kiyasseh dated August 13, 2018, reveals some basics on the sought out Electric Vehicle (EV).

Chart of the Week: A Bumpy Road Ahead for Electric Cars

 

 

Electric car charging station in Berlin, Germany: prices for lithium and cobalt—key ingredients in rechargeable batteries—are rising due limited supply and growing demand for electric cars (photo: Jens Kalaene/Newscom)

The surge in demand for electric cars has been fueled in part by the falling costs of lithium-ion batteries—driven by technological progress—which power everything from electric cars to smartphones.  

Lithium and cobalt are critical components in batteries for electric cars. The rapid growth in the demand for rechargeable batteries has now driven up these raw material prices, and given rise to concerns about potential cobalt and lithium scarcities that could slow the rollout of electric vehicles.

The price of cobalt is expected to remain high due to limited supply and growing demand.

The price of lithium carbonate increased by more than 30 percent in 2017. Even more staggering is the upswing in the price of cobalt, which has risen by 150 percent between September 2016 and July 2018. And as shown in our Chart of the Week from the April World Economic Outlook, cobalt price booms are not without historical precedent.

Unlike lithium, the price of cobalt is expected to remain high due to limited supply and growing demand. In 2016, more than 50 percent of the global supply of cobalt came from the Democratic Republic of the Congo.

Cobalt prices have also been volatile due to insecure supply chains. The chart also shows that since 1915 there have been four price boom episodes. Those during 1978–81 and 1995–96 elicited sharp responses: world production grew by 54.1 and 36.1 percent in 1983 and 1995, respectively, significantly higher than the 50-year average of 4.8 percent. The uptick in prices since 2016 and futures prices for 2018–19 suggest that history may be repeating itself and production could yet again accelerate, at least temporarily. Indeed, cobalt prices have come down somewhat in recent months, following strong production increases in the Democratic Republic of the Congo and reduced demand from China.

Several developments could, however, limit this price volatility. These include increased recycling of cobalt and new primary production mining techniques.

Perhaps most important, battery technology is continuing to improve and could bring the surge in cobalt prices to a halt. One of the leading alternatives to the lithium-ion battery concept—the solid-state battery—would mean smaller and more-energy-dense batteries that do not need cobalt.

Continued research and innovation in this area could spur further progress in the development of electric vehicles and portable electronics.

Related Links:

Chart of the Week: Electric Takeover in Transportation

 

When countries rebuild stronger, faster and more inclusively

When countries rebuild stronger, faster and more inclusively

The World Bank in a press release on June 18, 2018 informed that When countries rebuild stronger, faster and more inclusively after natural disasters they can reduce the impact on people’s livelihoods and well-being by as much as 31 percent, potentially cutting global average losses from $555 billion to $382 billion per year. That’s the conclusion of a new report from the World Bank and the Global Facility for Disaster Reduction and Recovery (GFDRR), released today.

The report, Building Back Better: Achieving resilience through stronger, faster and more inclusive post-disaster reconstruction, assesses socioeconomic resilience and the impact of disasters on people’s well-being. It covers 149 countries, including 17 small island states, representing 95.5 percent of the world’s population.

It finds that in small island states particularly, better post-disaster recovery and reconstruction efforts can reduce annual losses by an average of 59 percent. And in 10 countries with a high level of risk – Antigua and Barbuda, Dominica, Guatemala, Trinidad and Tobago, Zimbabwe, Myanmar, Belize, Vanuatu, Peru and Angola – better reconstruction would reduce overall losses due to natural disasters by more than 60 percent.

 


Meanwhile, more and more of concerned people, organisations and communities about the way the planet’s climate is believed to be altered by human activities, are transcending beatitude, denial, and gradually moving into a more positive and now somewhat active role.    Hence, this article press release that is republished here for its spread in the MENA region.
Region that has undergone tremendous changes within the last 50 years and / or since the start of the exploitation of its generous underground fossil resources.

 


The Future We Don’t Want: Billions of urban citizens at risk of climate-related heatwaves, drought, flooding, food shortages and blackouts by 2050

 

New research reveals number of cities and citizens threatened by direct and indirect climate hazards if global greenhouse gas emissions continue unchecked.

Bold climate action by cities key to prevent 1.6 billion people being exposed to extreme heat; 800 million to coastal flooding and 650 million to droughts.

Download & explore the full research here.

Cape Town, South Africa (19 June 2018) — Billions of people in thousands of cities around the world will be at risk from climate-related heatwaves, drought, flooding, food shortages, blackouts and social inequality by mid-century without bold and urgent action to reduce greenhouse gas emissions. Fortunately, cities around the world are delivering bold climate solutions to avert these outcomes and create a healthier, safer, more equal and prosperous future for all urban citizens.

New research from C40 Cities, Global Covenant of Mayors for Climate & Energy, the Urban Climate Change Research Network (UCCRN) and Acclimatise predicts how many urban residents will face potentially devastating heat waves, flooding and droughts by 2050 if global warming continues on its current trajectory. The Future We Don’t Want – How climate change could impact the world’s greatest cities also looks at indirect climate impacts and estimates how climate change under a ‘business-as-usual scenario’ will impact urban food security and energy systems as well as the urban poor, who are most vulnerable to climate change.

Headline findings include that, by 2050

  • ·         1.6 billion people living in over 970 cities, will be regularly exposed to extreme high temperatures.
  • ·         Over 800 million people, living in 570 cities, will be vulnerable to sea level rise and coastal flooding.
  • ·         650 million people, in over 500 cities, will be at risk of water shortages due to climate change.
  • ·         2.5 billion people will be living in over 1,600 cities where national food supply is threatened by climate change.
  • ·         The power supply to 470 million people, in over 230 cities, will be vulnerable to sea level rise.
  • ·         215 million poor urban residents, living in slum areas in over 490 cities, will face increasing climate risks.

The Future We Don’t Want – How climate change could impact the world’s greatest cities also contains concrete examples of bold climate solutions that cities are delivering, which, if adopted at-scale, could help prevent the worst impacts of climate change. The research was launched at the Adaptation Futures conference in Cape Town, where representatives of cities around the world are sharing ideas on how to prepare and adapt their cities for the effects of climate change.

“For decades, scientists have been warning of the risks that climate change will pose from increasing global temperatures, rising sea levels, growing inequality and water, food and energy shortages. Now we have the clearest possible evidence of just what these impacts will mean for the citizens of the world’s cities, said Mark Watts, Executive Director C40 Cities. “This is the future that nobody wants. Our research should serve as a wake-up call on just how urgently we need to be delivering bold climate action.”

“For most C40 cities, the impacts of climate change are not a far off threat. From Cape Town to Houston, Mayors are seeing severe droughts, storms, fires and more,” said Antha Williams, Head of Environmental Programs at Bloomberg Philanthropies and C40 Board Member, “As this report shows, C40 mayors are on the front line of climate change, and the actions they take today–to use less energy in buildings, transition to clean transportation and reduce waste—are necessary to ensure prosperity and safety for their citizens.”

“Climate change is already happening, and the world’s great cities are feeling the impact. Cape Town is facing an unprecedented drought, but thanks to the efforts of our citizens to adapt, we have averted Day Zero, when we would have had to switch off most taps,” said Patricia de Lille, Executive Mayor of Cape Town and Global Covenant of Mayors for Climate & Energy Board Member. “The lessons from Cape Town, and from this important new research is that every city must invest today in the infrastructure and policies that will protect citizens from the future effects of our changing global climate.”

Many of the solutions being delivered by cities, as well as regional governments, investors and businesses to prevent the worst impacts of climate change, will be showcased at the Global Climate Action Summit, taking place in San Francisco, September 12-14th, 2018.

Download PDF

Cement is a major contributor to Climate Change

Cement is a major contributor to Climate Change

As a key input into concrete, the most widely used construction material in the world, cement is a major contributor to climate change . The chemical and thermal combustion processes involved in the production of cement are a large source of carbon dioxide (CO2) emissions. Each year, more than 4 billion tonnes of cement are produced, accounting for around 8 per cent of global CO2 emissions.

Per Middle East Magazine and according to Citi’s MENA Projects Tracker, $2.5 trillion of projects are under development or actually under construction across the MENA region. Of these, 90% are in the Gulf and 60% are in just two countries: the UAE and Saudi Arabia. By sector, just over $1 trillion of this total is being invested in MENA real estate projects and $812bn in infrastructural schemes. The scale of this investment can be seen in comparison with the $376bn that is being spent on the lynchpin of the regional economy: oil and gas. The report’s author, Farek Soussa, commented: “There is a heavy bias in the UAE towards real estate projects, while infrastructure projects dominate in Qatar. The oil and gas sector is of greatest significance in Algeria, while Jordan is spending most on power and water.” Cement is of course the main ingredient that is an absolute must in any building and / or infrastructure development.


A Chatham House report on Making Concrete Change: Innovation in Low-carbon Cement and Concrete by Johanna Lehne, Research Associate, Energy, Environment and Resources and Felix Preston, Senior Research, Fellow and Deputy Research Director, Energy, Environment is excerpted here below starting with its Executive Summary first few words.

 

No silver bullet

Shifting to a Paris-compliant pathway, with net-zero CO2 emissions by around 2050,7 will require going further and moving faster on all available solutions, as well as making sure that the next generation of innovative technology options is ready as soon as possible.

To illustrate the scale of this challenge, Figure 1 shows the decarbonization pathway set out by the IEA and CSI’s 2018 Technology Roadmap.8 This scenario shows action on four mitigation levers – energy efficiency, fuel switching, clinker substitution and innovative technologies (including CCS) – to achieve CO2 reductions consistent with at least a 50 per cent chance of limiting the average global temperature increase to 2°C above pre-industrial levels by 2100.

Figure 1: Towards a Paris-compatible pathway

Source: Authors’ analysis of scenario set out in International Energy Agency and Cement Sustainability Initiative (2018), Technology Roadmap: Low-Carbon Transition in the Cement Industry, Paris: International Energy Agency, https://www.wbcsdcement.org/index.php/key-issues/climate-protection/technology-roadmap (accessed 24 Apr. 2018). The B2DS is based on data in International Energy Agency (2017), Energy Technology Perspectives 2017.

Note: RTS stands for ‘reference technology scenario’, 2DS stands for ‘2°C Scenario’ and B2DS stands for ‘Beyond 2°C Scenario’. For descriptions of each model, refer to the original source. The ETP B2DS and roadmap models are not directly comparable as they are based on slightly different assumptions as to future demand for cement but they are shown together here as an indicative comparison.

As recognized in the 2018 roadmap, there is a considerable gap between this scenario and a scenario consistent with countries’ more ambitious aspirations in the Paris Agreement of limiting the temperature increase even further, towards 1.5°C. The IEA’s Beyond 2°C Scenario (B2DS) indicated earlier is only an illustration of the challenge such an emissions reduction would represent in relation to current industry ambitions.

Shifting towards B2DS will require more ambition across each of these levers, particularly in the short term:

·         Although many of the relatively straightforward gains have already been made, there is still scope for improvement in energy efficiency. Europe and the US now lag behind India and China on energy efficiency, due to the continuing use of older equipment, and will need to at least close this gap in the next decade if they are to meet industry targets. The key challenges will be the capital investment required and the fact that action on other levers such as alternative fuels and CCS may slow progress on energy efficiency.

·         Shifting away from the use of fossil fuels in cement production will also be key. China and India, in particular, have significant potential to switch to sustainable lower-carbon fuels. In Europe, cement plants have been shown to run on 90 per cent non-fossil fuels. A key challenge will be to ensure the availability of biomass from truly sustainable sources. Currently, the sector relies largely on waste-derived biomass; however, shifting towards a majority share of alternative fuels may eventually prompt the sector to turn to wood pellets.

·         Clinker substitution involves replacing a share of the clinker content in cement with other materials. This could play a greater role than currently anticipated. Achieving an average global clinker ratio of 0.60 by 2050, as set out by the 2018 Technology Roadmap, has the potential to mitigate almost 0.2 gigatonnes (GT) of CO2 in 2050.9 The share of clinker needed can be reduced even further in individual applications, with the potential to lower the CO2 emissions of those applications by as much as 70–90 per cent. At the very ambitious end of the scale, if 70 per cent replacement was achieved on a global scale, this could represent almost 1.5 GT of CO2emissions saved in 2050.10 Clinker substitution is not only a very effective solution, but also one that can be deployed cheaply today, as it does not generally require investments in new equipment or changes in fuel sources. It is, therefore, especially important to scale up clinker substitution in the near term while more radical options, such as the introduction of novel and carbon-negative cements, are still under development. The greatest constraints are the uncertain availability of clinker substitute materials and the lack of customer demand for low-clinker cements.

·         Many experts are understandably sceptical about the potential to rapidly scale up CCS. Although other technologies are included in this lever, as presented in Figure 1, in practice hopes are currently pinned on CCS. This is reflected in both the 2018 roadmap and other major modelling exercises today. Even if hopes for CCS prove optimistic, carbon-capture technology could still prove critical in moving to B2DS. Moreover, CCS could complement the development of some novel concretes, which rely on a source of pure captured CO2 for carbonation curing. One of the key challenges facing CCS is the cost of the technology versus that of other levers.

However, it will be impossible to even get close to B2DS without also achieving radical changes in cement consumption and breakthroughs in the development of novel cements:

·         Most cement emissions scenarios depend on projections of consumption that deserve far greater scrutiny. Concrete demand can be reduced, sometimes by more than 50 per cent, by taking a new approach to design, using higher-quality concretes, substituting concrete for other materials, improving the efficiency with which it is used on construction sites, and increasing the share of concrete that is reused and recycled. Deploying an array of such demand-side approaches in key growth markets such as China, India and African countries will be essential if the sector is to reach net-zero emissions. Action on material efficiency will, however, depend on the cooperation and motivation of a host of actors beyond the cement sector.

·         Moving towards net-zero emissions for all new construction will require a rapid scale-up in the deployment of novel cements. Some can achieve emissions reductions of more than 90 per cent. Others can sequester carbon, theoretically capturing more carbon than is emitted in their production, rendering them carbon-negative. So far, however, the majority of these products have failed to achieve commercial viability. Achieving breakthroughs in this area will require concerted investment in research and large-scale demonstration projects, as well as education and training of consumers to build the market for novel products.

Even with ambitious projections across all mitigation levers to meet the B2DS, more than o.8 GT of CO2 would still be emitted in 2050. These ‘residual emissions’ would need to be offset by other means. Achieving zero CO2 emissions, therefore, needs to remain an objective beyond 2050. Failure to do so will imply a greater reliance on negative-emissions technologies that have so far failed to scale.