Oman plans to build world’s largest green hydrogen plant

Oman plans to build world’s largest green hydrogen plant


Laura Paddison in The Guardian. Oman plans to build the world’s largest green hydrogen plant that Renewable power is slowly replacing fossil fuel usage at all levels as a world trend shows the way. This article reporting such a piece of news that is as unnecessary as unproductive because solar, wind power is the future, and fossil fuels usage would be binned forever within the near future for good. 

The picture above is for illustration and is of WindPower Monthly.

Oman plans to build world’s largest green hydrogen plant

Oil-producing nation aims plant powered by wind and solar energy to be at full capacity by 2038

A solar plant in Chile, Latin America. The Oman plant construction is scheduled to start in 2028 in al-Wusta governorate on the Arabian Sea. Photograph: Reuters

Oman is planning to build one of the largest green hydrogen plants in the world in a move to make the oil-producing nation a leader in renewable energy technology.

Construction is scheduled to start in 2028 in Al Wusta governorate on the Arabian Sea. It will be built in stages, with the aim to be at full capacity by 2038, powered by 25 gigawatts of wind and solar energy.

The consortium of companies behind the $30bn (£21bn) project includes the state-owned oil and gas company OQ, the Hong Kong-based renewable hydrogen developer InterContinental Energy and the Kuwait-based energy investor Enertech.

Once online, the plant will use renewable energy to split water in an electrolyser to produce green hydrogen, which is able to replace fossil fuels without producing carbon emissions. Most will be exported to Europe and Asia, said Alicia Eastman, the co-founder and president of InterContinental Energy, either as hydrogen or converted into green ammonia, which is easier to ship and store. The facility aims to produce 1.8m tonnes of green hydrogen and up to 10m tonnes of green ammonia a year.

Oman currently relies heavily on fossil fuels, generating up to 85% of its GDP from oil and gas, but its fossil fuel reserves are dwindling and becoming increasingly costly to extract. In December 2020, the country published its Oman Vision 2040 strategy, a plan to diversify the economy away from fossil fuels and increase investment in renewables.Advertisement

Green hydrogen could play an important role, said Eastman, thanks to the Oman’s combination of plentiful daytime sun and strong winds at night. “Oman is one of the places in the world that I’ve called the ‘future renewable superpowers’,” said Michael Liebreich, the founder of BloombergNEF, “because what you really want [to produce green hydrogen] is very cheap solar and very cheap wind.”

While electrification is the most efficient way of decarbonising most sectors, it’s limited when it comes to energy-intensive industries such as steel, chemicals, aviation and shipping. Green hydrogen will be vital to help fill these gaps, said the International Energy Agency in its report published this week, which called for an end to fossil fuel investments if governments are serious about climate commitments.

A wave of net zero-emissions pledges has already led to a slew of hydrogen strategies, including from the European Commission in 2020, which predicted the share of hydrogen in the EU’s energy mix would rise from 2% to 14% by 2050.

Yet green hydrogen currently makes up less than 1% of global hydrogen production. The majority is still produced using fossil fuels such as gas and coal, in a process that emits about 830m tonnes of carbon annually, equivalent to the emissions of the UK and Indonesia combined. “Blue hydrogen” is a cleaner version, as emissions are captured and stored, but it is still produced using gas – and is seen by some oil companies as a way to keep using fossil fuels.

One of the stumbling blocks for green hydrogen has been cost, partly because of the huge amounts of energy required. But as renewables and electrolysers become cheaper, and fossil fuel prices rise, costs could fall by up to 64% by 2030, according to research from the consultancy Wood Mackenzie.

“Most green hydrogen products will not be competitive for at least another decade,” said Falko Ueckerdt, a senior scientist at the Potsdam Institute for Climate Impact Research, who sees the Oman project as “a sign that investors anticipate large future demands for hydrogen-based fuels after 2030”.

Oman’s proposed plant is just one in a slate of green hydrogen mega projects planned globally. Eastman said InterContinental Energy has a number of other plants in the works, including a 26GW wind and solar green hydrogen plant in the Pilbara, Western Australia. If constructed, this $36bn (£25.5bn) plant would be the world’s biggest energy project. The first phase is expected to be online by 2028.

In March, the renewables company Enegix Energy announced the construction of a green hydrogen plan in Ceará state, north-eastern Brazil. Once built, which the company estimates will take about four years, the plant would produce more than 600,000 tonnes of green hydrogen per year from 3.4GW of wind and solar power.

“People are upping the gigawatts, and they should,” said Eastman, “there’s so much room in the market.”

Adapting to Climate Impacts in the MENA Region

Adapting to Climate Impacts in the MENA Region

The UNFCC, in this article, comes after an IEA report in which a change of goals of the world’s leading energy advisor from that of the oil supplies protector to that of fossil fuels banning partisan is noticeable. Transitioning to a net-zero will mean breaking bad habits, but can we get there in time? This question is mainly addressed to those oil-exporting as well as would-be exporters countries of the MENA region.

It seems it is either adapting to Climate Impacts in the MENA Region and survive the potential effects of lack of exceptional revenues through quasi-vital know-how or going to COP26 and be pointed at as the source of all evils.

So without further ado, let us learn what is proposed.

The picture above is of The Conversation.

Adapting to Climate Impacts in the MENA Region

Adapting to Climate Impacts in the MENA Region

UN Climate Change News, 21 May 2021 – Closing knowledge gaps on the effects of climate change across the North African and West Asia/Gulf Cooperation Council (GCC) subregions was the focus of a recent meeting which showcased initiatives that will form part of an action plan for closing such knowledge gaps in the region.

Understanding the effects of climate change in the local and regional context and identifying specific regional knowledge gaps are important first steps in scaling up adaptation actions – a key pillar of the Paris Agreement. The meeting held on 5 May was the third of its kind involving partners of the Lima Adaptation Knowledge Initiative (LAKI).

 ‘Adaptation as we know is a journey, building on knowledge and cultivating synergy with the Sustainable Development Goals (SDGs) and other global frameworks. The initiatives outlined in the action plan will go a long way towards providing concrete anchors for advancing adaptation efforts in countries in this region,’ said Paul Desanker, Manager, Adaptation Division, UNFCCC.

Defining joint adaptation actions

A collection of projects led by organizations partnering with the UNFCCC were presented at the meeting, including: Scaling up mangrove carbon sequestration studies from the United Arab Emirates to Oman to support adaptation; development of a digital system accessible through mobile phones to transfer key knowledge to farmers to shield them from climate shocks in Jordan; frameworks and systems for data collection and monitoring of climate impacts; and technological advances in drought management and smart agriculture.

Funding opportunities to support the implementation of actions

Participants at the meeting shared their views on opportunities and challenges for cross-collaboration and received guidance from climate finance experts on funding schemes to support the action plan. The coordinator for the Global Adaptation Network at the United Nations Environment Programme (UNEP) Elizabeth Bernhardt, explained that innovation is a key priority for securing funding opportunities such as the Global Ecosystem-based Adaptation Fund and the Adaptation Fund Climate Innovation Accelerator (AFCIA).

‘If there’s something that has proven benefits for communities and proven ability to be scaled up and scaled out to other locations, it would be a top priority. Is it truly innovative? Does it demonstrate how a barrier could be overcome in a way that other countries can emulate?’ she said.

MENA adaption knowledge gaps tweet

Next steps

This was the last of a series of three virtual meetings, as a part of the second phase of the LAKI for North Africa and GCC subregions. In the previous phase, a total of 28 priority adaptation knowledge gaps were identified across the two subregions, which included lack of data, lack of access to data, lack of actionable knowledge, and lack of methods to process knowledge into an actionable form.

Adapting to Climate Impacts in the MENA Region
LAKI group image

Activities in the plan will now be implemented, and progress for each action will be showcased at events throughout the year, including the UN Climate Change Conference COP26 in Glasgow in November and the MENA Regional Climate Week in March 2022.

Adapting to Climate Impacts in the MENA Region
Tweet Dr. Khalil Ahmed

More information

The LAKI is a joint action pledge made by the UNFCCC secretariat and UNEP through the Global Adaptation Network (GAN) under the Nairobi work programme (NWP). For the West Asia-GCC and North Africa subregions, the secretariat collaborates with the UNFCCC-WGEO Regional Collaboration Center for the Middle East, North Africa and South Asia based in Dubai (RCC Dubai), the UNEP Regional Office for West Asia, and the UN Economic and Social Commission for Western Asia (UNESCWA).

To learn more about the LAKI, click here.

To get involved, please contact: nwp@unfccc.int


Saudi Arabia’s Brand New Futuristic City

Saudi Arabia’s Brand New Futuristic City

EuroAsia review in an Observer Research Foundation analysis of Saudi Arabia’s Brand New Futuristic City NEOM and its related ‘The Line’ as projects with a larger objective. The picture above is for illustration and is of NEOM Properties and Real Estate.

Analysis: Saudi Arabia’s Brand New Futuristic City

By Ramanath Jha

Saudi Arabia’s Brand New Futuristic City
Saudi Crown Prince Mohammed bin Salman announces “The Line” project at NEOM. (SPA)

In 2017, the Crown Prince of Saudi Arabia, Mohammed bin Salman, announced the launch of the nation’s futuristic and fully automated business zone, NEOM. This hi-tech business hub, to be located in the Tabuk province in the northwestern part of Saudi Arabia along the Red Sea coast, is to be established at a cost of US $500 billion (INR 37.5 lakh crore). The region has been selected in view of its relatively mild climate. Most of Saudi Arabia has a desert climate with extremely oppressive day temperatures of above 45° Celsius. The project’s total area is slated to be 26,500 square kilometre and will link Jordan and Egypt via Saudi territory. The project is expected to generate 380,000 jobs and contribute US $48 billion (INR 36,000 crore) to the kingdom’s GDP by 2030.

More recently, in Jan 2021, the Crown Prince also announced that, as part of the NEOM project, a zero-carbon city called ‘The Line’ would be set up. The Crown Prince labelled the city project as a “civilisational plan that puts humans first”. ‘The Line’ is crafted as a linear city for one million people, running 170 kilometre long, with a width that would be walkable in five minutes. It is anticipated that people from all over the world would be drawn by the city’s excellent environment, state-of-the-art infrastructure and superior quality of life.

‘The Line’ is not designed to be a conventional city but a futuristic one. A city’s usual amenities such as schools, hospitals, and gardens will be carefully crafted in view of the residents’ expected proclivity towards the availability of top-quality education, health, and recreation. Additionally, the city would position itself as a top tourist destination. The Saudi administration also seeks to dispel any misgivings about the governance model that ‘The Line’ would follow. The entire NEOM area, including ‘The Line’, will be a free trade zone with its own tax structure and an autonomous legal system.

The technological and environmental plans of the “zero cars, zero streets, and zero carbon emissions” city have drawn the most attention. Drawings of ‘The Line’ show the city infrastructure and services arranged in three layers. The top layer, above ground, will be a pedestrian layer. It will be supported by two underground layers. The one immediately below ground will be the service layer of physical infrastructure. And further below the service layer will be the spine layer for transport. Project proponents stated that “High-speed transportation, utilities, digital infrastructure and logistics will be seamlessly integrated in dedicated spaces running in an invisible layer along The Line”. The high-speed transit is being designed to reach people anywhere in the city within 20 minutes. Alternately, people could walk to conveniences within five minutes. Artificial intelligence will have a critical role in the city. ‘The Line’ would be powered by 100 percent clean energy, rendering the city pollution-free, healthy, and sustainable. The city would be run totally on smart city technologies. Robots will play a key role in the areas of security, logistics, home delivery, and provision of care.

It is expected that the city infrastructure would cost between US $100 to 200 billion (INR 7.5 to 15 lakh crore). Investments are planned to be drawn from the US $500 billion allocated for NEOM, the Public Investment Fund (PIF) which is the Saudi’s sovereign wealth fund, and local and global investors over 10 years. Construction on the project’s first phase has already begun. NEOM Bay, some hotel complexes, and luxurious apartments have been completed. In 2019, the NEOM Bay Airport was inaugurated. A huge complex of palaces for the Saudi king, prince, and royal family members has also been started.

NEOM and ‘The Line’ are projects with a larger objective. As the world moves towards a non-oil-based future, Saudi Arabia, as the largest producer of oil, finds its economy threatened unless it finds alternate sources of wealth creation. Global trade and tourism would be the key areas for Saudi’s new economy. NEOM, backed by ‘The Line’ as the first fully automated city, could emerge as the leading global destination. In this, there is commonality between Saudi Arabia and the other gulf countries. Bahrain (Economic Vision 2030), Oman (Vision 2040), Qatar (National Vision 2030), UAE (Vision 2021) and Saudi Arabia (Vision 2030) are all seeking to diversify their economies and reduce dependence on oil.

Information on many areas in regard to ‘The Line’ are scarce. However, based on the material available, a broad assessment is possible. Firstly, the history of megaprojects in Saudi Arabia has not been happy. “The Saudi landscape is already dotted with failed or abandoned megaprojects”. Furthermore, such projects do not always turn out the way they are planned. Adverse turns in the global economy, cost overruns, and reduced financial returns on investment are some of the most common failings. Even if the above cited observations are dismissed as speculation, the fact is that this urban endeavour incorporates certain technologies that do not exist. Robot maids, dinosaur robots, and flying cars are still in the making. Neither are high-speed transits today capable of speeds of 512 kilometre per hour, which the city would require for end-to-end travel in 20 minutes.

Furthermore, irrespective of whatever kind of city one builds, a city’s foundational philosophy ought to remain the same. The quality of a city rests on its economy, its environment, and its equity. A city that overstates one to the detriment of the others imbalances itself and over time becomes unsustainable. The project proponents have talked profusely about the economic, technological, and environmental angles, but nothing is known about how equitable the city would be and who could afford to live there.

NEOM and The Line, as cited earlier, would be governed by a set of laws different from Saudi Arabia. But given the nature of the Saudi polity, where some of the governance practices are among the most regressive, uncomfortable incongruities for residents may surface. Since the city is looking for people to move in from the rest of the world, such concerns may not enthuse populations to move in. Saudi Arabia is not very kind to dissent; hence, very few voices of disagreement from inside the country have emanated. Some have mildly sought to remind the Saudi administration that there is no point spending billions of dollars on a totally new venture when the already existing Saudi cities were in a state of disrepair and needed fixing.

The Saudi administration highlights its environmental concerns and is planning to build a totally eco-friendly city. As the Crown Prince said, “Why should we sacrifice nature for the sake of development? Why should seven million people die every year because of pollution? Why should we lose one million people every year due to traffic accidents?” However, this does not seem to be practiced on the ground. The city’s construction is cutting “through its surroundings, forcing its way through tough terrain rather than embracing natural features such as the coast line.”

The Saudi administration also faces criticism on account of the attempt to evict the 20,000-strong Howeitat tribe from its centuries-old homeland that falls within the territory of NEOM. The tribe is resisting eviction. When leaders of the tribe protested, several from the leadership found themselves behind bars. The most vocal critic of them all, Alya Abutayah Alhwaiti, lost his life. The negative publicity was sought to be countered through a public relations exercise, crafted by an American PR company. However, much of the disquiet around the project remains.

Why Should You Consider Solar Panels?

Why Should You Consider Solar Panels?

Solar Panels are an effective and low-maintenance way to generate your own renewable energy. Here’s why you should consider installing them on your roof!

Why Should You Consider Solar Panels?

With energy prices rising to pre-pandemic levels, many of us have noticed that our energy bills have begun to rise in recent weeks. And if you’ve been with the same energy supplier for a long time, you’re likely on a standard variable tariff. Which means that if your energy costs haven’t increased in recent weeks, they’re likely to in the near future.

Now’s the perfect time to consider investing in photovoltaic (PV) solar panels. Today’s investment could result in decades of savings, add value to your home, and help you to drastically reduce your household’s carbon footprint. Solar power is on the rise in the MENA region, with investment reaching $1 trillion in the 2019-23 period in the region. Here we’ll look at some of the reasons why you should consider installing them on your roof.

Can solar panels really save me money?

Absolutely! Switch-Plan estimates that by installing solar panels, you can save anywhere from £85-£200 per year GBP with a full solar array. Depending on the size of your solar array and the daylight hours in your region, your solar array could become profitable in less than 10 years. If you’re a DIY enthusiast, you may be able to install your own solar panels, drastically reducing your costs.

As the solar market in the area grows, and becomes more competitive, households have more options than ever.

Don’t solar panels only work on sunny days?

The MENA region is known for its hot and sunny climate. But solar panels still work on cloudy, rainy and overcast days. As long as the sun shines in the sky, your PV solar panels will generate energy for your home.

Want to generate energy through the night as well? Solar arrays can be combined with domestic wind turbines to create hybrid systems that generate energy through the day and night.

Would you like your energy company to pay you?

Around 50% of the energy generated by your solar panels throughout the day is fed back into the grid. The good news is that your energy companies can pay you for this via Feed in Tariffs. These pay a flat rate per kWh of energy generated which can further offset the cost of the grid energy you use.

You’ve paid your energy company enough over the years. Isn’t it time they started paying you?

Combine energy tariffs with Feed In Tariffs to optimise savings

It’s important to note that you don’t have to use the same company for your energy tariff and your Feed in Tariff. By comparing energy plans and FiTs from different companies, you can optimise your savings, offsetting the cost of your installation and helping it to become profitable faster. All while helping to reduce the MENA region’s reliance on fossil fuels and pave the way for a renewable future.

Geospatial technology indispensable for building a sustainable world

Geospatial technology indispensable for building a sustainable world

GIS has a role everywhere, whether it is an understanding change in crop patterns, assessing water availability, or implementing climate models. Geospatial technology indispensable for building a sustainable world.

Thus wrote Pushpendra Johari in the Financial Express. But shouldn’t we need to accelerate digital adoption in line with the SDGs In any case and without further ado, here is the story.

Geospatial technology indispensable for building a sustainable world

By Pushpendra Johari

The application of geospatial technologies for sustainable development is emerging fast. (The image above is by NITI Aayog)

We all are aware of the earth’s constantly changing landscape. Humans are selfishly moving ahead to grow themselves at the cost of nature, causing overpopulation, deforestation, rapid urbanisation, and industrialization. These activities have been exhausting our natural resources and changing climate by pushing pollutants into the environment. Sadly, climate change is happening faster than we can even imagine. It’s making the earth more vulnerable to disasters and affecting our very existence. It is time we think about building a sustainable world to cater to these changing geological dynamics.

Building a sustainable world entails effective planning that every human action should ascertain its impact on the environment before any implementation. Policies should drive this thinking. Only if we take care of our planet, the planet will take care of us.

Environmental issues are spatial in nature that drive “what” might happen, “where”, “when”, and “how much”. So, we need to align our thinking to these criteria and do our planning considering them. This is where technologies like ‘’geospatial’’ come to our rescue. Geospatial technologies provide us tools to capture information about any location on the earth’s surface, whether historical, real-time, geological, or climate-related.

The application of geospatial technologies for sustainable development is emerging fast. It is helping us in getting solutions to the issues revolving around climate change, natural calamities, food security, and human habitation.

Tracing “where” element for food security and addressing climate induced changes

Climate change is impacting the entire food system by affecting its availability, accessibility, quality, and utilization. It’s influencing the weather patterns and changing the suitability of the crops that are currently grown in certain areas, impacting the crop yields because of hydro-meteorological events, and causing soil erosion.

So, how do we tackle such issues? Here, the “where” element is of high significance. GIS enables comprehensive assessment and monitoring of environmental conditions related to sustainable agriculture development and food security.

GIS helps answer some of the toughest agri-related questions such as developing smart agri systems for crop diversification/shifting, development of an application for climate-resilient seeds, irrigation planning, groundwater storage, fertilizers and pesticides based on climatic conditions, yield forecasting, crop acreage, mapping crop vulnerability, etc.,

Availability of water has a strong bearing on food security. Climate projections reveal that water is going to be scarce in the future. So, it is becoming important to understand water availability to address food security issues. For instance, to understand the crop shifts, GIS-based water availability modelling is applied to evaluate the current situation of a crop and where it can be grown in the future.

GIS has a role everywhere, whether it is an understanding change in crop patterns, assessing water availability, or implementing climate models. It is required to ascertain everything on the surface of the earth.

Assessing natural disasters

As a result of climate change, the rainfall patterns have changed from longer spans of milder rains to very short span of high-intensity rainfall, rising temperature on land and ocean, and melting glaciers. All this is driving the severity of floods, cyclones, droughts, and potential of sea-level rise. The severity and frequency of flood and cyclone events in India have increased in recent years. For instance, the recurring flood like conditions in Mumbai every year, Hyderabad floods (October 2020), Assam Floods (July 2020), Cyclone Amphan (May 2020), Cyclone Fani (May 2019), Chennai Floods (December 2015), and J&K Flood (March 2015).

Since the rainfall pattern has changed, mechanisms needs to be developed to store excessive water effectively for future. Using GIS, we can identify locations to harvest the excessive rain/flood water and create ponds, lakes, and reservoirs.

Geospatial technology is helping create flood forecasting models and early warning systems. A flood forecasting system is an automated software that monitors real-time rainfall and water levels and combines it with forecasted rainfall to generate flood extents and depths to identify potential risk areas.

Additionally, cyclone is another hazard experienced by our country. GIS based scientific cyclone models can estimate cyclone events related parameters such as from where they originated, speed of the wind, surge height, likely landfall points and areas at risk. Thus, helping enhance the Government’s preparedness, recovery and response to the events, safeguarding human life and infrastructure.

Building resilient infrastructure

Estimates reveal that by 2050, 7 out of 10 people across the globe will be living in urban areas. To manage rising urbanization, it is essential to design and implement programs based on understanding the frequency and magnitude of climate events and how they are likely to change in the future. For instance, the extremely severe cyclonic storm ‘FANI’ in 2019 caused massive infrastructural damage in Odisha. It took nearly 40 days to restore power.

Disaster mitigation, prevention, preparedness, and emergency response can be planned with a prior risk assessment. But how do we assess these risks? The primary information is to know where our infrastructure elements are and relate their key characteristics to the potential hazard intensities. GIS help us to build detailed repository of all infrastructure elements along with key attributes. Understanding of the hazard intensities developed using GIS based techniques when applied to the infrastructure attributes helps to understand their risk better and plan for actions that can reduce those risks.

Mapping renewable energy

As human civilisation is growing, our energy needs are also growing at a phenomenal pace. With excessive energy consumption, it’s time we switch to renewable energy and use what’s naturally available to us in the form of sunlight, wind, rain, tides, waves, biomass, and thermal energy. But where do we find these resources in abundance? How do we harness that resource in a specific area? GIS technology helps in making this decision quicker and simpler. It aids policymakers and decision-makers in identifying the right location for renewable energy based power generation.

For instance, to establish a renewable energy plant in any area, GIS techniques can derive insights on the wind and solar potential, distance from cities, and socio-economic impact. This analysis shares a clear picture of which location would be ideal for implementing a renewable energy power plant. For resilient consumption, GIS plays an effective role by determining where to focus and how to manage these resources. Geospatial technology showcases the potential for sustainable energy resources.

Deregulating use of geospatial data – What the future holds

With so many technological interventions in store for building a better and sustainable future, the recent policy on deregulation of geospatial data has unlocked socio-economic opportunities necessary for sustainable development. The new policy will not only spur innovation but open several avenues for sustainable developmental initiatives. The changes in the deregulation will help in generation of high-resolution data sets like digital terrain models, bathymetry, soil maps, street view maps etc. that will play a very critical role in taking this sustainable development charter forward.

A highly accurate digital data infrastructure will provide a much-needed thrust in terms of availability and enhancement of high-resolution location data for the country, enabling several Indian companies to create world-class maps and mapping technologies.

In addition, the high-quality location data will help improve the accuracy of real-time measures to safeguard the public from disasters and climate change crisis. This is likely to accelerate scientific research and innovative practices to plan better disaster assessment and mitigation strategies.

This open access to geospatial data will ensure informed decision-making and help accomplish Sustainable Development Goals by boosting environment informed development of resilient infrastructure, public sector services, and food security in the country.

(The author is Senior VP – Sustainability at RMSI. Views expressed are personal.)