pub-9018797892728621, DIRECT, f08c47fec0942fa0
17 ways technology could change the world by 2025

17 ways technology could change the world by 2025

In its series Future shocks: 17 technology predictions for 2025, the World Economic Forum came up with 17 ways technology could change the world by 2025 as follows. But Human Brilliance, Ingenuity and Skills will always be needed.

  • We asked our 2020 intake of Technology Pioneers for their views on how technology will change the world in the next five years.
  • From quantum computers and 5G in action to managing cancer chronically, here are their predictions for our near-term future.
Image: Getty Images/iStockphoto
1. AI-optimized manufacturing

Paper and pencil tracking, luck, significant global travel and opaque supply chains are part of today’s status quo, resulting in large amounts of wasted energy, materials and time. Accelerated in part by the long-term shutdown of international and regional travel by COVID-19, companies that design and build products will rapidly adopt cloud-based technologies to aggregate, intelligently transform, and contextually present product and process data from manufacturing lines throughout their supply chains. By 2025, this ubiquitous stream of data and the intelligent algorithms crunching it will enable manufacturing lines to continuously optimize towards higher levels of output and product quality – reducing overall waste in manufacturing by up to 50%. As a result, we will enjoy higher quality products, produced faster, at lower cost to our pocketbooks and the environment.

Anna-Katrina Shedletsky, CEO and Founder of Instrumental

Image: Getty Images/iStockphoto
2. A far-reaching energy transformation

In 2025, carbon footprints will be viewed as socially unacceptable, much like drink driving is today. The COVID-19 pandemic will have focused the public’s attention on the need to take action to deal with threats to our way of life, our health and our future. Public attention will drive government policy and behavioural changes, with carbon footprints becoming a subject of worldwide scrutiny. Individuals, companies and countries will seek the quickest and most affordable ways to achieve net-zero – the elimination of their carbon footprint. The creation of a sustainable, net-zero future will be built through a far-reaching energy transformation that significantly reduces the world’s carbon emissions, and through the emergence of a massive carbon management industry that captures, utilizes and eliminates carbon dioxide. We’ll see a diversity of new technologies aimed at both reducing and removing the world’s emissions – unleashing a wave of innovation to compare with the industrial and digital Revolutions of the past.

Steve Oldham, CEO of Carbon Engineering

Image: Getty Images/iStockphoto
3. A new era of computing

By 2025, quantum computing will have outgrown its infancy, and a first generation of commercial devices will be able tackle meaningful, real-world problems. One major application of this new kind of computer will be the simulation of complex chemical reactions, a powerful tool that opens up new avenues in drug development. Quantum chemistry calculations will also aid the design of novel materials with desired properties, for instance better catalysts for the automotive industry that curb emissions and help fight climate change. Right now, the development of pharmaceuticals and performance materials relies massively on trial and error, which means it is an iterative, time-consuming and terribly expensive process. Quantum computers may soon be able to change this. They will significantly shorten product development cycles and reduce the costs for R&D.

Thomas Monz, Co-Founder and CEO of Alpine Quantum Technologies

Image: Getty Images/iStockphoto
4. Healthcare paradigm shift to prevention through diet

By 2025, healthcare systems will adopt more preventative health approaches based on the developing science behind the health benefits of plant-rich, nutrient-dense diets. This trend will be enabled by AI-powered and systems biology-based technology that exponentially grows our knowledge of the role of specific dietary phytonutrients in specific human health and functional outcomes. After the pandemic of 2020, consumers will be more aware of the importance of their underlying health and will increasingly demand healthier food to help support their natural defences. Armed with a much deeper understanding of nutrition, the global food industry can respond by offering a broader range of product options to support optimal health outcomes. The healthcare industry can respond by promoting earth’s plant intelligence for more resilient lives and to incentivize people to take care of themselves in an effort to reduce unsustainable costs.

Jim Flatt, Co-Founder and CEO of Brightseed

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
5. 5G will enhance the global economy and save lives

Overnight, we’ve experienced a sharp increase in delivery services with a need for “day-of” goods from providers like Amazon and Instacart – but it has been limited. With 5G networks in place, tied directly into autonomous bots, goods would be delivered safely within hours.

Wifi can’t scale to meet higher capacity demands. Sheltering-in-place has moved businesses and classrooms to video conferencing, highlighting poor-quality networks. Low latency 5G networks would resolve this lack of network reliability and even allow for more high-capacity services like telehealth, telesurgery and ER services. Businesses can offset the high cost of mobility with economy-boosting activities including smart factories, real-time monitoring, and content-intensive, real-time edge-compute services. 5G private networks make this possible and changes the mobile services economy.

The roll-out of 5G creates markets that we only imagine – like self-driving bots, along with a mobility-as-a-service economy – and others we can’t imagine, enabling next generations to invent thriving markets and prosperous causes.

Maha Achour, Founder and CEO of Metawave

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
6. A new normal in managing cancer

Technology drives data, data catalyzes knowledge, and knowledge enables empowerment. In tomorrow’s world, cancer will be managed like any chronic health condition —we will be able to precisely identify what we may be facing and be empowered to overcome it.

In other words, a new normal will emerge in how we can manage cancer. We will see more early and proactive screening with improved diagnostics innovation, such as in better genome sequencing technology or in liquid biopsy, that promises higher ease of testing, higher accuracy and ideally at an affordable cost. Early detection and intervention in common cancer types will not only save lives but reduce the financial and emotional burden of late discovery.

We will also see a revolution in treatment propelled by technology. Gene editing and immunotherapy that bring fewer side effects will have made greater headway. With advances in early screening and treatment going hand in hand, cancer will no longer be the cursed ‘C’ word that inspires such fear among people.

Sizhen Wang, CEO of Genetron Health

Image: Getty Images/iStockphoto
7. Robotic retail

Historically, robotics has turned around many industries, while a few select sectors – such as grocery retail – have remained largely untouched . With the use of a new robotics application called ‘microfulfillment’, Grocery retailing will no longer look the same. The use of robotics downstream at a ‘hyper local’ level (as opposed to the traditional upstream application in the supply chain) will disrupt this 100-year-old, $5 trillion industry and all its stakeholders will experience significant change. Retailers will operate at a higher order of magnitude on productivity, which will in turn result in positive and enticing returns in the online grocery business (unheard of at the moment). This technology also unlocks broader access to food and a better customer proposition to consumers at large: speed, product availability and cost. Microfulfillment centers are located in existing (and typically less productive) real estate at the store level and can operate 5-10% more cheaply than a brick and mortar store. We predict that value will be equally captured by retailers and consumers as online.

Jose Aguerrevere, Co-Founder, Chairman and CEO of Takeoff Technologies

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
8. A blurring of physical and virtual spaces

One thing the current pandemic has shown us is how important technology is for maintaining and facilitating communication – not simply for work purposes, but for building real emotional connections. In the next few years we can expect to see this progress accelerate, with AI technology built to connect people at a human level and drive them closer to each other, even when physically they’re apart. The line between physical space and virtual will forever be blurred. We’ll start to see capabilities for global events – from SXSW to the Glastonbury Festival – to provide fully digitalized alternatives, beyond simple live streaming into full experiences. However, it’s not as simple as just providing these services – data privacy will have to be prioritised in order to create confidence among consumers. At the beginning of the COVID-19 pandemic we saw a lot in the news about concerns over the security of video conferencing companies. These concerns aren’t going anywhere and as digital connectivity increases, brands simply can’t afford to give users anything less than full transparency and control over their data.

Tugce Bulut, CEO of Streetbees

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
9. Putting individuals – not institutions – at the heart of healthcare

By 2025, the lines separating culture, information technology and health will be blurred. Engineering biology, machine learning and the sharing economy will establish a framework for decentralising the healthcare continuum, moving it from institutions to the individual. Propelling this forward are advances in artificial intelligence and new supply chain delivery mechanisms, which require the real-time biological data that engineering biology will deliver as simple, low-cost diagnostic tests to individuals in every corner of the globe. As a result, morbidity, mortality and costs will decrease in acute conditions, such as infectious diseases, because only the most severe cases will need additional care. Fewer infected people will leave their homes, dramatically altering disease epidemiology while decreasing the burden on healthcare systems. A corresponding decrease in costs and increase in the quality of care follows, as inexpensive diagnostics move expenses and power to the individual, simultaneously increasing the cost-efficiency of care. Inextricable links between health, socio-economic status and quality of life will begin to loosen, and tensions that exist by equating health with access to healthcare institutions will dissipate. From daily care to pandemics, these converging technologies will alter economic and social factors to relieve many pressures on the global human condition.

Rahul Dhanda, Co-Founder and CEO of Sherlock Biosciences

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
10. The future of construction has already begun

Construction will become a synchronized sequence of manufacturing processes, delivering control, change and production at scale. It will be a safer, faster and more cost-effective way to build the homes, offices, factories and other structures we need to thrive in cities and beyond. As rich datasets are created across the construction industry through the internet of things, AI and image capture, to name a few, this vision is already coming to life. Using data to deeply understand industry processes is profoundly enhancing the ability of field professionals to trust their instincts in real-time decision making, enabling learning and progress while gaining trust and adoption.

Actionable data sheds light where we could not see before, empowering leaders to manage projects proactively rather than reactively. Precision in planning and execution enables construction professionals to control the environment, instead of it controlling them, and creates repeatable processes that are easier to control, automate, and teach.

That’s the future of construction. And it’s already begun.

Meirav Oren, CEO and Co-Founder of Versatile

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
11. Gigaton-scale CO2 removal will help to reverse climate change

A scale up of negative emission technologies, such as carbon dioxide removal, will remove climate-relevant amounts of CO2 from the air. This will be necessary in order to limit global warming to 1.5°C. While humanity will do everything possible to stop emitting more carbon into the atmosphere, it will also do everything it can in order to remove historic CO2 from the air permanently. By becoming widely accessible, the demand for CO2 removal will increase and costs will fall. CO2 removal will be scaled up to the gigaton-level, and will become the responsible option for removing unavoidable emissions from the air. It will empower individuals to have a direct and climate-positive impact on the level of CO2 in the atmosphere. It will ultimately help to prevent global warming from reaching dangerous levels and give humanity the potential to reverse climate change.

Jan Wurzbacher, Co-Founder and co-CEO of Climeworks

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
12. A new era in medicine

Medicine has always been on a quest to gather more knowledge and understanding of human biology for better clinical decision-making. AI is that new tool that will enable us to extract more insights at an unprecedented level from all the medical ‘big data’ that has never really been fully taken advantage of in the past. It will shift the world of medicine and how it is practiced.

Brandon Suh, CEO of Lunit

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
13. Closing the wealth gap

Improvements in AI will finally put access to wealth creation within reach of the masses. Financial advisors, who are knowledge workers, have been the mainstay of wealth management: using customized strategies to grow a small nest egg into a larger one. Since knowledge workers are expensive, access to wealth management has often meant you already need to be wealthy to preserve and grow your wealth. As a result, historically, wealth management has been out of reach of those who needed it most. Artificial intelligence is improving at such a speed that the strategies employed by these financial advisors will be accessible via technology, and therefore affordable for the masses. Just like you don’t need to know how near-field communication works to use ApplePay, tens of millions of people won’t have to know modern portfolio theory to be able to have their money work for them.

Atish Davda, Co-Founder and CEO of Equityzen

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
14. A clean energy revolution supported by digital twins

Over the next five years, the energy transition will reach a tipping point. The cost of new-build renewable energy will be lower than the marginal cost of fossil fuels. A global innovation ecosystem will have provided an environment in which problems can be addressed collectively, and allowed for the deployment of innovation to be scaled rapidly. As a result, we will have seen an astounding increase in offshore wind capacity. We will have achieved this through an unwavering commitment to digitalization, which will have gathered a pace that aligns with Moore’s law to mirror solar’s innovation curve. The rapid development of digital twins – virtual replicas of physical devices – will support a systems-level transformation of the energy sector. The scientific machine learning that combines physics-based models with big data will lead to leaner designs, lower operating costs and ultimately clean, affordable energy for all. The ability to monitor structural health in real-time and fix things before they break will result in safer, more resilient infrastructure and everything from wind farms to bridges and unmanned aerial vehicles being protected by a real-time digital twin.

Thomas Laurent, CEO of Akselos

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
15. Understanding the microscopic secrets hidden on surfaces

Every surface on Earth carries hidden information that will prove essential for avoiding pandemic-related crises, both now and in the future. The built environment, where humans spend 90% of their lives, is laden with naturally occurring microbiomes comprised of bacterial, fungal and viral ecosystems. Technology that accelerates our ability to rapidly sample, digitalize and interpret microbiome data will transform our understanding of how pathogens spread. Exposing this invisible microbiome data layer will identify genetic signatures that can predict when and where people and groups are shedding pathogens, which surfaces and environments present the highest transmission risk, and how these risks are impacted by our actions and change over time. We are just scratching the surface of what microbiome data insights offer and will see this accelerate over the next five years. These insights will not only help us avoid and respond to pandemics, but will influence how we design, operate and clean environments like buildings, cars, subways and planes, in addition to how we support economic activity without sacrificing public health.

Jessica Green, Co-Founder and CEO of Phylagen

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
16. Machine learning and AI expedite decarbonization in carbon-heavy industries

Over the next five years, carbon-heavy industries will use machine learning and AI technology to dramatically reduce their carbon footprint. Traditionally, industries like manufacturing and oil and gas have been slow to implement decarbonization efforts as they struggle to maintain productivity and profitability while doing so. However, climate change, as well as regulatory pressure and market volatility, are pushing these industries to adjust. For example, oil and gas and industrial manufacturing organizations are feeling the pinch of regulators, who want them to significantly reduce CO2 emissions within the next few years. Technology-enabled initiatives were vital to boosting decarbonizing efforts in sectors like transportation and buildings – and heavy industries will follow a similar approach. Indeed, as a result of increasing digital transformation, carbon-heavy sectors will be able to utilize advanced technologies, like AI and machine learning, using real-time, high-fidelity data from billions of connected devices to efficiently and proactively reduce harmful emissions and decrease carbon footprints.

David King, CEO of FogHorn Systems

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
17. Privacy is pervasive – and prioritized

Despite the accelerating regulatory environments we’ve seen surface in recent years, we are now just seeing the tip of the privacy iceberg, both from a regulatory and consumer standpoint. Five years from now, privacy and data-centric security will have reached commodity status – and the ability for consumers to protect and control sensitive data assets will be viewed as the rule rather than the exception. As awareness and understanding continue to build, so will the prevalence of privacy preserving and enhancing capabilities, namely privacy-enhancing technologies (PET). By 2025, PET as a technology category will become mainstream. They will be a foundational element of enterprise privacy and security strategies rather than an added-on component integrated only meet a minimum compliance threshold. While the world will still lack a global privacy standard, organizations will embrace a data-centric approach to security that provides the flexibility necessary to adapt to regional regulations and consumer expectations. These efforts will be led by cross-functional teams representing the data, privacy and security interests within an organization.

Ellison Anne Williams, Founder and CEO of Enveil

Image: Getty Images/iStockphoto
How will technology change the world in the next five years?

It is very exciting to see the pace and transformative potential of today’s innovative technologies being applied to solve the world’s most pressing problems, such as feeding a global and growing population; improving access to and quality of healthcare; and significantly reducing carbon emissions to arrest the negative effects of climate change. The next five years will see profound improvements in addressing these challenges as entrepreneurs, the investment community and the world’s largest enterprise R&D organizations focus on developing and deploying solutions that will deliver tangible results.

While the COVID-19 pandemic has provided a difficult lesson in just how susceptible our world is today to human and economic turmoil, it has also – perhaps for the first time in history – necessitated global collaboration, data transparency and speed at the highest levels of government in order to minimize an immediate threat to human life. History will be our judge, but despite the heroic resolve and resiliency on a country by country basis, as a world we have underperformed. As a global community and through platforms like the World Economic Forum, we must continue to bring visibility to these issues while recognizing and supporting the opportunities for technology and innovation that can best and most rapidly address them.

Robert Piconi, CEO of Energy Vault

Have you read?

Find out more in :

Situation of the Automotive Industry in the MENA

Situation of the Automotive Industry in the MENA


Automotive LOGISTICS MIDDLE EAST AND AFRICA in an article titled MENA: Leading the way in innovation by Victoria Johns on 27 November 2019 gives us a clear picture of the prevailing situation of the automotive industry in the MENA region.


While it has some infrastructure and regulatory obstacles to overcome, the automotive industry in the Middle East and Africa (MENA) region is developing fast, driven by investment and innovation, as delegates heard at the ALMENA conference in Dubai last week.

20191122_224219

Despite a sustained period of decline over the last few years affected by a fall in oil prices and geopolitical strife, the Middle East and Africa is fast becoming a region of automotive and supply chain opportunity. Carmakers such as VW, Toyota, GM, Groupe PSA and Mercedes-Benz are investing in local assembly, ranging from North African countries including Morocco, Algeria and Egypt, to sub-Saharan markets such as Rwanda, Ethiopia, Kenya and Ghana. There are also some notable logistics developments there and in the Middle East.

According to figures from IHS Markit, light vehicle sales in the Middle East and Africa are to increase by 6% in 2020 to around 3.5m, supported by ongoing recovery in Saudi Arabia and Gulf countries. That is still below 4.65m units sold in 2015 but at that point Middle East sales were helped by increases in Saudi Arabia and Iran, the latter of which was seeing an (albeit brief) resurgence after sanctions were temporarily lifted. That said, by 2025 annual new light vehicle sales across the region are set to hit more than 5.3m, according to IHS projections.

Saudi Arabia already accounts for about 40% of total vehicles sold in the Middle East and IHS Markit forecasts annual sales could reach over 800,000 beyond units by 2030. Contributing factors including the recovery in price per barrel of oil and to a lesser extent the lifting of the ban on female drivers suggest sustained growth is expected to start in the next two years.

Countries within the Gulf Corporation Council (GCC) have established a national employment challenge to employ more local workers, the so-called ‘Gulfization’ policy, which is increasing labour opportunities in the area, something also fuelled by the exodus of foreign workers and the need for investment in local skills and talent.

Read more on Automotive LOGISTICS

Electric cars are here – but we’ll still need fuel for a long time

Electric cars are here – but we’ll still need fuel for a long time

David Reiner, Cambridge Judge Business School and Ilkka Hannula, University of Cambridge, say that Electric cars are here – but we’ll still need fuel for a long time.

An interesting interval notably for all those industries already devoting billions of Dollars to building these E-cars, thus affecting not only the whole world’s manufacturing and energy generation industries alike but also the planet’s climate. But this obviously not happening overnight, is somehow phased as described in this article.

Many vehicles can’t just be powered by battery. MuchMania/Shutterstock

Electric cars are often seen as one of the great hopes for tackling climate change. With new models arriving in showrooms, major carmakers retooling for an electric future, and a small but growing number of consumers eager to convert from gas guzzlers, EVs appear to offer a way for us to decarbonise with little change to our way of life.

Yet there is a danger that fixating on electric cars leaves a large blind spot. Electrification would be very expensive for the lumbering lorries that haul goods across continents or is currently technically prohibitive for long-distance air travel.

Beyond all the enthusiasm surrounding electrification, currently light-duty passenger vehicles only comprise 50% of total global demand for energy in the transportation sector compared to 28% for heavy road vehicles, 10% for air, 9% for sea and 2% for rail.

Put simply, the current focus on electrifying passenger vehicles – though welcome – represents only part of the answer. For most other segments, fuels will be needed for the foreseeable future. And even for cars, electric vehicles are not a cure-all.

The unfortunate truth is that, on their own, battery electric vehicles (BEVs) cannot solve what we call the “100 EJ problem”. Demand for transport services are expected to rise dramatically in the coming decades. So the International Energy Agency (IEA) projects that we need to significantly reduce the amount of energy each vehicle uses just to keep total global energy demand in the transport sector roughly flat at current levels of 100 exajoules (EJ) by 2050. More than half of that 100 EJ is still expected to come from petroleum products and, by then, the share of light-duty vehicles in transport sector energy demand is expected to decline from 50% to 34%.

Electric cars don’t suit every journey. Nick Starichenko/Shutterstock

The vast majority of existing passenger trips can be accommodated by existing battery electric vehicles so, for many consumers, buying one will be an easy decision (as costs come down). But for those who frequently take very long journeys, the focus also needs to be on lower-carbon fuels.

Petroleum substitutes could extend sustainable transport to heavier vehicles and those seeking longer range, while using the existing refuelling infrastructure and vehicle fleet. Whereas battery electric vehicles will impose wider system costs (for example, the charging infrastructure needed to connect millions of new electric vehicles to the grid), all the transition costs of sustainable fuel substitutes are in the fuels themselves.

Our recent study is part of a renewed focus on synthetic fuels or synfuels (fuels converted from feedstocks other than petroleum). Synfuels were first made on an industrial scale in the 1920s by turning coal into liquid hydrocarbons using the so-called Fischer-Tropsch synthesis, named after its original German inventors. But using coal as a feedstock produces far dirtier fuel than even conventional petroleum-based fuels.

One possible route to carbon-neutral synthetic fuels would be to use woody residues and wastes as feedstock to create synthetic biofuels with less impact on the environment and food production than crop-based biofuels. Another option would be to produce synfuels from CO₂ and water using low-carbon electricity. But producing such “electrofuels” would need either a power system that is very low cost and ultra-low-carbon (such as those of Iceland or Quebec) or require dedicated sources of zero-carbon electricity that have high availability throughout the year.

Pilot plants

Synthetic biofuels and electrofuels both have the potential to deliver sustainable fuels at scale, but these efforts are still at the demonstration stage. Audi opened a €20M e-gas (electro fuel) plant in 2013 that produces 3.2 MW of synthetic methane from 6 MW of electricity. The €150M Swedish GoBiGas plant was commissioned in 2014 and produced synthetic biomethane at a scale of 20 MW using 30 MW of biomass.

Despite the many virtues of carbon-neutral synthetic fuels though, most commercial-scale projects are currently on hold. This is due to the high investment cost of pioneer process plants combined with a lack of sufficiently strong government policies to make them economically viable and share the risk of scale-up.

Government and industry attempts to encourage people to buy electric vehicles aren’t a problem in themselves. Our concern is that an exclusive focus on electrification may make solving the 100 EJ problem impossible. It is too early to tell which, if any, sustainable fuels will emerge successful and so the most pressing need is to scale up production from the current demonstration stage. If not, when our attention finally turns away from glossy electric car advertisements in a few years, we will find ourselves at a standing start in addressing the rest of the problem.

David Reiner, University Senior Lecturer in Technology Policy, Cambridge Judge Business School and Ilkka Hannula, Associate Researcher, Energy Policy Research Group, University of Cambridge

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The UAE and Hydrogen its power revolution

The UAE and Hydrogen its power revolution

Industrialists the world over say the gas can become a crucial part of the global energy mix – and faster than many people might imagine

UAE in prime position as hydrogen power revolution accelerates

By Satish Kumar / The National.

Updated: February 28, 2019.

Toyota’s hydrogen fuel cell car the Mirai. Such vehicles may power a sea-change in the use of the gas.

An energy source that can power everything from mass transport by land, sea and air to heavy industry, that does no harm to the environment and is practically limitless sounds like an ecologist’s Utopian dream.

But it’s no dream – and the revolution is already underway. Its name? Hydrogen – the most abundant element in the universe.

Industrialists the world over say the gas can become a crucial part of the global energy mix – and faster than many people might imagine. “I think the real test is when will the man in the street starts to recognise that hydrogen is part of the energy mix,” Ronnie Chalmers, vice president of the French industrial gases’ supplier Air Liquide’s Africa, Middle East and India hub, tells The National. “I think that will come before 2030, at different places and different times around the world.”

Ronnie Chalmers. Chris Whiteoak/The National

The Hydrogen Council says that by 2030 the gas will be a significant energy player with millions of hydrogen-powered vehicles on the road. Launched at the World Economic Forum 2017, in Davos, Hydrogen Council founders include Air Liquide, Toyota, BMW, Alstom and Airbus, among other big names.

The council believes the hydrogen sector will carry similar financial weight to the hydrocarbons industry with revenues worth some $2.5 trillion annually by 2050 and jobs for more than 30 million people globally. By comparison, the oil and gas market had total revenues of $1.97tn worldwide in 2017, according to BusinessWire’s Global Oil & Gas Industry Guide 2013-2017.

The council’s view may be a little optimistic, Robin Mills, the chief executive of the consultancy Qamar Energy, and author of The Myth of the Oil Crisis, tells The National. “Oil today is a $2.2tn business, gas say $0.5tn, coal $0.8tn,” he says. “So $2.5tn for hydrogen looks like a stretch. But it could certainly be a very major business.”

The mass implementation of hydrogen as a transport power source is already taking place. Hydrogen fuel cells power electric forklift trucks around the world and helps businesses such as Amazon, Ikea and others increase their production hours and reduce operating costs. The fuel cells do not need recharging like traditional battery-powered forklifts – hydrogen powered forklifts can be fully fuelled in under five minutes.

Hydrogen has been used in industry for decades such as in refining, treating metals and food processing but it is the acceleration of renewable energy that has spurred the multinationals’ interest – and Air Liquide sees the UAE as an ideal destination to further the hydrogen cause.

As a pioneer in renewable energy, particularly solar, the Emirates is committed to developing its green energy economy and, in part, this is why Air Liquide recently undertook a study in collaboration with Al Futtaim Toyota – which distributes Toyota’s hydrogen-powered Mirai vehicle in the UAE – and Khalifa University to look at strategies to grow the hydrogen industry here.

This month, the first solar-driven hydrogen electrolysis facility in the Middle East and North Africa (Mena) region was inaugurated in Dubai.

Sheikh Ahmed bin Saeed Al Maktoum, chairman of the Dubai Supreme Council of Energy and chairman of the Expo 2020 Dubai Higher Committee, broke ground on the project, a collaboration between Dubai Electricity and Water Authority, Expo 2020 Dubai and Siemens. It will be built at Dewa’s outdoor testing facilities in the Research and Development Centre at the Mohammed bin Rashid Al Maktoum Solar Park in Dubai, state media agency WAM reported.

Mr Chalmers adds that the UAE has all the right ambitions regarding decarbonisation in the economy and “it was easy for us to say to Al Futtaim, ‘You have the same problem as us, you have the product, you need somebody to build fuel stations, we need somebody to market the cars'”.

A Toyota Mirai hydrogen-powered car. Reuters

Speaking at a press event in December to showcase hydrogen mass transport potential, Saud Abbasi, managing director of Al Futtaim Toyota, said: “In our next chapter, and in line with the UAE Vision 2021, we believe that Mirai [hydrogen fuel cell-electric vehicle] and any other FCEV in the future, once adopted on a large national scale, can actively help the UAE in its march towards serious climate action thanks to the many practical benefits it presents such as zero pollutants, zero behavioural change, long mileage and minimal hydrogen filling time of three to five minutes.”

So far, Al Futtaim in partnership with Air Liquide has opened a hydrogen station, the first in the Middle East, at Al Badia, Dubai Festival City. A second station is set to start construction this year in Masdar City, in collaboration with Adnoc, Masdar and Al Futtaim.

Hydrogen refilling station in Al Badia. Reem Mohammed/The National

Air Liquide is also pushing the use of renewables as a source of hydrogen.

“The ultimate goal is to have 100 per cent green hydrogen – the definition of green hydrogen is that it comes from green energy. This could be solar, wind, biogas,” says Olivier Boucat, head of Air Liquide’s H2 Mobility unit.

Olivier Boucat. Chris Whiteoak/The National

The company admits it is not at that stage yet. Today, Air Liquide uses a mix of green and “brown” hydrogen – where methane sourced from coal or natural gas is processed to release hydrogen – producing a lot of CO2 as a byproduct.

But it aims to rapidly ramp up its share of green hydrogen produced by using water electrolysis and renewable sources of electricity, such as solar in the UAE, which does not emit CO2. In January, Air Liquide announced it had acquired an 18.6 per cent stake in Canadian company Hydrogenics Corporation for $20 million, which makes electrolysis hydrogen production equipment and fuel cells.

Electrolysis works by passing electricity through water which splits it into hydrogen and oxygen. The hydrogen is collected, transported and stored either in gas form or as a liquid super-chilled to minus 253°C – which, incidentally, is the form in which it is used to power space rockets. The oxygen can be used in other industrial processes.

Toyota’s Mirai has an electric motor over the front wheels, fuel cell under the front seats and a high pressure hydrogen tank beneath the rears. Courtesy Toyota

To power a car, for example, the hydrogen runs from the fuel tank into a fuel cell, where it re-combines with oxygen from the air, producing energy as electricity, rather than explosive energy as in an internal combustion engine. The resulting electricity is released in a controlled manner to power the engine, the same kind of engine an electric battery car uses.

But there is another significant difference between an electric battery vehicle and an FCEV.

“The heavier the car is the more energy it consumes,” says Pascal Schvester, Air Liquide’s director of the Middle East and India Industrial Merchant unit. A high-end electric vehicle (EV) today needs about 700kg of battery, which is maybe a third of the weight of the vehicle, he says. “That is something you do not have with a hydrogen fuel cell car – in which you have, say, 6kg of hydrogen.”

Pascal Schvester. Chris Whiteoak/The National

Currently, however, green hydrogen is prohibitively expensive to produce. But as countries move away from hydrocarbons as a fuel, economies of scale will bring the price down. “At the moment it’s better to have a large facility and then transport the hydrogen as a gas but when the volumes get big enough it will be better to transport as a liquid,” says Mr Boucat.

“This is happening already in California; we are just commissioning the first liquid hydrogen plant to provide liquid hydrogen to a station.”

With construction to start later this year, at a cost to build of around $150m, the plant will have the capacity to generate nearly 30 tonnes of hydrogen per day – enough to fuel 35,000 hydrogen-powered vehicles. The facility is designed to accelerate the deployment of new hydrogen FCEVs – cars and fleet vehicles such as taxis, trucks and buses and trams, as is happening in Europe.

However, hydrogen’s cost as a fuel is unlikely to reach commercial parity with petrol, diesel or electric battery power, although price is not likely to be the determining factor for its uptake, according to Mr Mills. “I think hydrogen will always be more expensive than petrol or diesel, but the reasons for its adoption would be that it’s zero-carbon, clean at the point of use, and (potentially) indefinitely renewable. The question is whether it can compete cost-wise with electric vehicles which are improving rapidly.

“Hydrogen’s at quite an immature stage, so this really depends on how much support it gets to build scale and bring down costs.”

Mr Mills says that the large-scale vehicle sector is most suited to hydrogen as a transport fuel. “Probably it will have to find its role in long-distance, heavy-duty transport like trucks, rail, shipping and perhaps aviation,” he says.

However, the more down-to-earth fleet vehicle sector is Air Liquide’s main focus in the UAE. “We’re not targeting the super cars like Jeremy Clarkson might drive on Top Gear,”says Mr Boucat, but he says “the aeroplane would be the last goal for us”.

Air Liquide’s Mr Schvester also points out that regarding fleets “you don’t need to have a massive network of hydrogen filling stations because in this case you are dealing with vehicles that are commuting from one place to the other on a fixed basis” so fuelling stations can be centralised.

Globally, Japan is generally seen as the leader so far in hydrogen take-up. The country’s Basic Hydrogen Strategy, released in December, 2017, reiterated its commitment to pioneer the world’s first “Hydrogen Society”. The strategy primarily aims to achieve cost parity of hydrogen with competing fuels, such as petrol in transport and Liquified Natural Gas (LNG) in power generation.

“By 2030 Japan will start to import hydrogen in liquid form to produce energy for various applications in the country,” says Mr Boucat. “When we reach that point we are at a very large scale.”

Last month, South Korea announced a major investment plan to go the same way. By 2040, the country aims to increase the cumulative total of fuel cell vehicles to 6.2 million, raise the number of hydrogen refuelling stations to 1,200 (from just 14 today) and also boost the supply of power-generating fuel cells.

Through these measures, the government hopes to create 420,000 jobs and $38.35 billion in value added to the economy each year by 2040.

China now invests about 100bn yuan a year (Dh54.09bn) in hydrogen energy, according to Professor Zong Qiang Mao of Tsinghua University’s Institute of Nuclear and New Energy Technology, who adds that the country has the capacity to produce about 170,000 FCEVs per year. It’s likely to become a huge market. “I predict that in about 10 years we will also be the largest market in the world for hydrogen energy,” Mr Zong told cH2ange, an organisation dedicated to promoting the hydrogen economy and which is supported by Air Liquide.

Germany in September opened its 50th hydrogen filling station. With the ramp-up of the number of fuel cell vehicles, another 300 hydrogen refuelling stations are planned over the next two or three years.

In Paris, the Societe du Taxi Electrique Parisien has a total of 100 hydrogen-powered vehicles in its fleet, and is aiming to have 600 such vehicles by 2020. In the UK, meanwhile, the government announced last year police cars and taxis will be among nearly 200 new hydrogen powered vehicles as part of a project that has won £8.8m (Dh42.4m) in funding from the Department for Transport to increase the number of hydrogen cars on the roads.

Air Liquide believes such developments are just the start.

“I think within a few years we’ll see more [hydrogen-powered] trains, taxis, buses and trucks and the man in the street will think, ‘ah yes, it’s just another hydrogen vehicle,'” says Mr Chalmers.

“We got used to LNG trucks, we’re getting used to EVs and next will be hydrogen.”

By 2040, 54% of all new car sales will be for Electric

By 2040, 54% of all new car sales will be for Electric

According to Bloomberg, by 2040, 54% of all new car sales will be for Electric (EVs). Millions of them will then take a good portion out of oil demand and remove millions of barrels of transport fuel every day. It adds that the most significant factor in the EV surge is what’s under the hood, i.e. lithium-ion batteries.
An International Monetary Fund blog post by Christian Bogmans and Lama Kiyasseh dated August 13, 2018, reveals some basics on the sought out Electric Vehicle (EV).

Chart of the Week: A Bumpy Road Ahead for Electric Cars

 

 

Electric car charging station in Berlin, Germany: prices for lithium and cobalt—key ingredients in rechargeable batteries—are rising due limited supply and growing demand for electric cars (photo: Jens Kalaene/Newscom)

The surge in demand for electric cars has been fueled in part by the falling costs of lithium-ion batteries—driven by technological progress—which power everything from electric cars to smartphones.  

Lithium and cobalt are critical components in batteries for electric cars. The rapid growth in the demand for rechargeable batteries has now driven up these raw material prices, and given rise to concerns about potential cobalt and lithium scarcities that could slow the rollout of electric vehicles.

The price of cobalt is expected to remain high due to limited supply and growing demand.

The price of lithium carbonate increased by more than 30 percent in 2017. Even more staggering is the upswing in the price of cobalt, which has risen by 150 percent between September 2016 and July 2018. And as shown in our Chart of the Week from the April World Economic Outlook, cobalt price booms are not without historical precedent.

Unlike lithium, the price of cobalt is expected to remain high due to limited supply and growing demand. In 2016, more than 50 percent of the global supply of cobalt came from the Democratic Republic of the Congo.

Cobalt prices have also been volatile due to insecure supply chains. The chart also shows that since 1915 there have been four price boom episodes. Those during 1978–81 and 1995–96 elicited sharp responses: world production grew by 54.1 and 36.1 percent in 1983 and 1995, respectively, significantly higher than the 50-year average of 4.8 percent. The uptick in prices since 2016 and futures prices for 2018–19 suggest that history may be repeating itself and production could yet again accelerate, at least temporarily. Indeed, cobalt prices have come down somewhat in recent months, following strong production increases in the Democratic Republic of the Congo and reduced demand from China.

Several developments could, however, limit this price volatility. These include increased recycling of cobalt and new primary production mining techniques.

Perhaps most important, battery technology is continuing to improve and could bring the surge in cobalt prices to a halt. One of the leading alternatives to the lithium-ion battery concept—the solid-state battery—would mean smaller and more-energy-dense batteries that do not need cobalt.

Continued research and innovation in this area could spur further progress in the development of electric vehicles and portable electronics.

Related Links:

Chart of the Week: Electric Takeover in Transportation

 

UAE’s latest Mass Transport Dream System

UAE’s latest Mass Transport Dream System

All the GCC’s media reported recently that the UAE’s latest mass transport dream system being undertaken by the Hyperloop Transportation Technologies informing that progress of the current work ongoing in Toulouse, France, is quite substantive and not far from completion. This is about engineering and fabrication of a set of tubes, that will make the core element in this new mode of transport of both people and freight. These steel tubes with an interior diameter of 4 meter, once linearly assembled above and below ground into a sort of giant pipeline would allow passenger capsules and shipping containers to travel along it in record time.

Meanwhile, the UAE that is adopting this technology is also reported to reflect on the quality of life of its citizens and will still be trying to further enhance their happiness levels.  

“50 percent of government transactions on the federal level will be conducted using blockchain technology by 2021.”

Blockchain would seem to be the new buzzword as put by Sheikh Mohammed himself who added saying that the adoption of blockchain would allow the government not only to face future challenges but also to contribute in saving unnecessary expenditure.

Another notable novelty is that of Dubai trialling the use of digital number plates that can alert authorities if there is an accident. We reproduce this article of Jessica Miley for Interesting Engineering of April 11th, 2018.

Dubai Set to Test Digital Number Plates on Cars in the City

Dubai Set to Test Digital Number Plates on Cars in the City / Pexels

Dubai is set to launch digital number plates as part of a trial that will also see cars fitted with GPS and transmitters. The trialed number plates will also be able to alert emergency services if the car is in an accident. 

 

Dubai is determined to become a global leader in technology and is implementing a range of trials to test emerging technologies in everyday use. Drivers lucky to trial the digital number plates will receive a range of benefits. 

The number plates not only enable police or ambulance to find the car if there has been any sort of accident, the plates can also monitor traffic conditions and communicate that to other drivers. 

Digital number plates can make parking a breeze

The digital number plates can also be linked to the individual’s bank account so that all parking and fines are automatically deducted. Sultan Abdullah al-Marzouqi, the head of the Vehicle Licensing Department at Dubai’s Roads and Transport Authority (RTA), says the plates will make life smoother and easier for drivers in Dubai. 

The small digital panel can also update with a message if necessary to alert or warn other drivers about changing conditions. The trial period will see the plates put the test in Dubai’s hot dry climate. 

The trial will start next month and end in November when a decision will be made about the ongoing use of the plates. Details of the cost of the possible plate rollout are not yet known. Sultan Abdullah says the financial details will only be able to be determined once the trial ends. 

Critics of the plates question how much knowledge about an individual’s whereabouts the government should have. If every car is fitted with the plates, then the location of every person connected to the government is basically known by the authorities at all times. 

Dubai wants to be a leader in emerging technologies particularly related to transport. The 3-million person city hopes to have self-driving cars accounting for s a quarter of journeys by 2030.

Police force could enforce from the air

Dubai city authorities have announced their desire to use drone taxis in the city as the possible method to overcome heavy traffic congestion. They are also planning a Hyperloop system between downtown Dubai and the United Arab Emirates capital Abu Dhabi. 

The Hyperloop would cut the 120km journey between the two cities down to just 12 minutes.

The rapidly growing city also announced it is investigating the possible use of flying hoverbike drones for its police force. The Dubai police force has outlined plans to add a bunch of the Russian designed Hoversurf Scorpion 3 to the team for both manned and unmanned missions. 

The force made the announcement at GITEX, the largest technology expo in the Gulf region. The futuristic devices can fly with a pilot at up to 70kmh and in their unmanned mode can reach top speeds of 100 kmh. Unfortunately, the hoverbikes only have a range of about 20-25 minutes and the batteries take about three hours to fully charge.

 More reading on Dubai are in: