What to Consider When Comparing Energy Prices?

What to Consider When Comparing Energy Prices?

This is a good question that one should ask oneself before making any switch.  Needless to say, when comparing energy prices, the lower you can get your energy costs, the better. But is there anything else that consumers need to consider? What to consider when comparing Energy prices? 

Many in the MENA region, and all over the world, are looking for ways to save money on their energy bills. Indeed, many readers may have already invested in the means to develop their own clean energy to reduce their reliance on energy from the grid. But even if you’ve invested in solar panels or domestic wind turbines, you can still make substantial savings by switching energy suppliers regularly.

Here, we’ll look at some of the things you should keep in mind when comparing energy prices.

How often should I compare energy prices?

The good folks at Switch-Plan know a thing or two about helping consumers to compare energy prices. They help energy consumers in the UK and throughout Europe to save a small fortune on their energy bills every year. The Switch-Plan team recommends comparing energy prices and getting a new tariff every 12-18 months. This ensures that you get great value for money, while also helping to keep the energy market competitive.

Of course, when comparing energy prices, the cheaper a plan you can get, the better. But be wary of false economies.

As well as keeping an eye out for low prices, you should also consider…

How renewable is your energy?

Many eco-conscious energy consumers today prefer to get their energy from 100% renewable sources such as wind, solar or hydropower. The good news is that these green energy plans are often just as cheap (or cheaper) than plans that use fossil fuels. There are even energy tariffs that use 100% carbon-neutral gas. This may be carbon-offset or sourced from farm or animal waste (biomethane).

How flexible is your contract?

There are lots of different types of energy plans. Broadly speaking, however, they fall into two categories: fixed-rate and variable. Fixed-rate energy plans keep your energy spending rates locked in for a fixed period (usually 12-24 months). Variable-rate plans rise and fall along with the wholesale cost of energy. So your bills could go up or down at any time (although your supplier will need to provide at least 30 days’ notice).

It’s up to you to decide whether you value predictability or flexibility more.

How good is your prospective supplier’s customer service?

We all want great energy prices. But they can be poor compensation if we have to deal with substandard customer service. Make sure that you use relevant local resources to see how energy suppliers measure up in terms of their customer service. There’s more to a supplier than low prices. Make sure the lived experiences of real customers match the bold claims made on the supplier’s website!

Will you be charged a fee if you switch?

Finally, most (but not all) fixed-term energy contracts require customers to pay an early exit fee if they switch suppliers before their contract has ended. This may be offset by the savings you make from switching. However, it’s a good idea to check for early exit fees so that you can make a better-informed decision.

Solar, wind power to drive renewable energy growth this year

Solar, wind power to drive renewable energy growth this year

SUNBIZ informs that solar, wind power to drive renewable energy growth this year, as everyone the world over is finding out. The highly spoken of Energy Transition is happening before our very eyes. The highly expressed Energy Transition is happening before our very eyes, and this story is an illustration of it happening.

PETALING JAYA: Renewable installations in solar, wind and storage facilities are set to rise by 40% year on year to another record 190GW globally this year, accelerating from a 30% on-year expansion in 2020 despite project delays caused by the Covid-19 pandemic, predominantly driven by solar photovoltaic (PV) solutions, followed by offshore wind installations, according to Rystad Energy’s “Renewable Energy Trends” presentation.

In a note, AmInvestment Bank Research (AmResearch) said Asia is expected to be the main driver of renewable capacity increase with an addition of 80GW this year, followed by the United States at 55GW and Europe at 25GW. Asia, represented by China, will account for the largest cumulative renewable capacity of 630MW in 2021, twice Europe’s 320MW and 2.3 times North America’s 280MW.

Zooming in on the local scene, the research house pointed out that the shift towards renewable energy (RE) in Malaysia has been in progress over the past three years with Petronas’ investment in AmPlus, which operates over 600MW of solar capacity in India and Southeast Asia.

“Amongst local service providers, only Yinson has an operational RE division from its US$30 million investment for a 95% equity stake in Rising Son Energy, which has a 140MW solar farm in Bhadla Solar Park Phase II, Rajasthan, India. Yinson also recently signed an agreement with listed NTPC to develop a 190MW plant in nearby nearby Nokh Solar Park.

“As Uzma has just secured a 50MW solar project which will only be operational by end-2023, we expect the momentum to gather steam for renewable projects by local O&G providers as gearing concerns are being alleviated by an improving oil price environment,” it said.

Overall, AmResearch still holds an “overweight” call on the oil & gas sector, recommending Yinson for its strong earnings growth momentum from the full-year contributions of FPSO vessels Helang, off Sarawak, Abigail-Joseph in Nigeria and Anna Nery in Brazil, together with multiple charter opportunities in Brazil and Africa.

“We also like Dialog Group and Serba Dinamik Holdings due to their resilient non-cyclical tank terminal and maintenance-based operations.

“Our other ‘buy’ calls are Sapura Energy, which will complete its RM10 billion debt restructuring package soon and position the formidable EPCIC group to secure fresh global orders; and Petronas Gas, which offers highly compelling dividend yields from its optimal capital structure strategy and resilient earnings base.”

Meanwhile, AmResearch noted that the tariffs of power purchase agreements (PPA) for PV facilities are projected to drop in Asia Pacific (Apac), Middle East North Africa, Americas and Europe due to open bidding competition, falling material prices, increasing project sizes and economies of scale.

Apac’s solar PPA prices, currently above US$50/MWh, are the highest globally, compared with below US$50/MWh and US$30/MWh in Europe and Americas respectively. Over the longer term, Apac’s tariffs may be squeezed due to rising competition amid rising interest in India’s multiple plants.

However, the PPA prices for Apac wind utilities, currently below US$50/MWh, are expected to rise to US$75/MWh in 2022, driven by the extension of Vietnam’s feed-in tariff mechanism to 2023. Additionally, utility wind capex has remained steady over the past three years at US$1.5/W in 2020.

Together with the growth in renewable energy, global utility scale battery operations are expected to expand in tandem given the periods of unavailability in solar and wind electricity generation.

For 2021, global utility scale battery installations are projected to double to 12.5GW, then grow by 60% to 20GW in 2022 and 50% to 30GW in 2023.

Hydrocarbon Resources and Their Spillover Effects

Hydrocarbon Resources and Their Spillover Effects

Despite the high oil revenues reaped from hydrocarbon resources and their spillover effects on all oil and non-oil producing countries, most MENA region economies suffer from structural problems and fragile political systems, preventing them from adopting effective politico-economic transformations.

The capital was available, but investments were typically misdirected to form in all cases ‘rentier’ economies, with Arab countries economies remaining very undiversified.  They primarily rely on oil and low value-added commodity products such as cement, alumina, fertilisers, and phosphates. 

Demographic transitions present a significant challenge: the population increased from 100 million in 1960 to about 400 million in 2011.  Sixty per cent are under 25 years old.

Urbanisation had increased from 38 per cent in 1970 to 65 per cent in 2010.

Rural development being not a priority; the increasing rural migration into the cities searching for jobs will put even more strain on all existing undeveloped infrastructures. 

Current economic development patterns will increasingly strain the ability of Arab governments to provide decent-paying jobs.  For instance, youth unemployment in the region is currently double the world average.

The demand for food, water, housing, education, transportation, electricity, and other municipal services will rise with higher learning institutions proliferating; the quality of education below average does not lead to employment. 

Power demand in Saudi Arabia, for example, is rising at a fast rate of over 7 per cent per year.

Amman, Cairo, and other Arab cities gradually lose their agriculture space because of the suburbs’ expansion.  Gated communities and high-rise office buildings are sprawling while ignoring low-income housing. 

In the meantime, the real world feels the planet is in danger of an environmental collapse; economists increasingly advise putting the planet on its balance sheets. For over a Century of Burning Fossil Fuels, to propel our cars, power our businesses, and keep the lights on in our homes, we never envisioned that we will paying this price.

Hydrocarbon Resources and Their Spillover Effects

In effect, a recent economic report on biodiversity indicates that economic practice will have to change because the world is finite.

For decades many have been aware of this reality. However, it is a giant leap forward for current economic thinking to acknowledge that Climate change is a symptom of a larger issue. The threat to life support systems from the plunder and demise of the natural environment is a reality.

Society, some governments, and industry are recognising that climate change can be controlled by replacing fossil fuels with renewable energy, electric cars and reducing emissions from every means of production.

Talking about replacing fossil fuels would mean a potential reduction of the abovementioned revenues.

However, would the spreading of solar farms all over the Sahara desert constitute compensation for the losses?

Little Knowledge of Energy Transition

Little Knowledge of Energy Transition

Posted on  by elizabethperry493 is this essay on a Survey of oil and gas workers shows little knowledge of energy transition. Here it is.

The picture above that is for illustrative purpose is of The impact of the global energy transition on MENA oil and gas producers written by Jade on 08/09/2019.

A report commissioned by international union coalition Industrial examines the geopolitics of fossil fuel producing countries (mainly, the United States, China, Europe and Russia) and the investments and performance of the Oil Majors (Chevron, ExxonMobil, Shell, BP, Total, as well as nationally-owned PetroChina, Gazprom and Equinor).  Energy transition, national strategies, and oil companies: what are the impacts for workers? was published in November 2020, with the research updated to reflect the impacts of Covid-19. 

In addition to a thorough examination of state and corporate actions, the report asked union representatives from four oil companies about how workers understand the energy transformation and its impact on their own jobs, and whether the concept of Just Transition has become part of their union’s agenda.     

Some highlights of the responses:

  • “the union members interviewed showed little knowledge about either the risks that the current transition process can generate for the industrial employee, or about the union discussion that seeks to equate the concern with the decarbonisation of the economy with the notions of equity and social justice. In some cases, even the term “Just Transition” was not known to respondents.”
  • Their lack of knowledge regarding the Just Transition can be justified by the fact that they do not believe that there will be any significant change in the energy mix of these companies.
  • Regarding information about energy transitions within the companies, “Managers are included, but the bottom of the work chain is not”
  • Lacking corporate policies or support, some  employees feel compelled to take responsibility for their own re-training

Echoing results of a similar survey of North Sea oil workers in the summer of 2020, published in Offshore: Oil and gas workers’ views on industry conditions and the energy transition, one European respondent is quoted saying: “In the end, everyone is looking for job security, good wages and healthy conditions. It doesn’t matter so much if the job is in another area, as long as it is in good working conditions”.

The researchers conclude that: “Far from being just a statement of how disconnected workers are from environmental issues, these researches reveal a window of opportunity for union movements to act in a better communication strategy with their union members, drawing their attention to the climate issue and transforming their hopes for job stability and better working conditions into an ecologically sustainable political agenda.”

The report was commissioned by Industrial and conducted by the Institute of Strategic Studies of Petroleum, Natural Gas and Biofuels (Ineep), a research organization created by Brazil’s United Federation of Oil and Gas Workers (FUP). 

Transforming Land and Sea for a More Sustainable World

Transforming Land and Sea for a More Sustainable World

Published at the Yale School of the Environment, this Yale Environment 360‘s article is all about Transforming Land and Sea for a More Sustainable World.

The feature picture above is of A Drive to Save Saharan Oases As Climate Change Takes a Toll. It was selected for illustration but above all to bring the topic closer to home.

Transforming Land and Sea for a More Sustainable World
The Ouarzazate Solar Power Station, a multiphase solar power complex located in Morocco, is the world’s largest concentrated solar power plant, with an energy capacity of 510 megawatts. The third phase of the facility, the 820-foot Noor III tower seen here, uses 7,400 heliostat mirrors to focus the sun’s energy to heat molten salt to 500–1,022 degrees Fahrenheit, producing steam that generates electricity.
The Ouarzazate Solar Power Station, a 510-megawatt solar power complex located in Morocco. SOURCE IMAGERY © MAXAR TECHNOLOGIES – WESTMINSTER, COLORADO

Overview: Transforming Land and Sea for a More Sustainable World

Aerial photos often document the destruction of the natural world. But these striking satellite images show how countries are beginning to respond to the global environmental crisis by restoring ecosystems, expanding renewable energy, and building climate resiliency infrastructure.

17 December 2020

As the global population nears 8 billion, the human footprint can be seen in almost every corner of the Earth. Logging roads cut deep into the Amazon rainforest. Plastics swirl in remote parts of the ocean. The world’s largest gold mine is carved out of the mountains of Indonesia.

Satellite and aerial images have captured much of this destruction, often in startling and unsettling images. But a new collection of photos offers a different view: Images of places where efforts are underway to slow or even reverse the damage we have done to the planet — massive wind and solar energy facilities being built on a vast scale; sea walls erected to hold back rising waters; an ambitious tree planting campaign to help stop the advance of desertification in sub-Saharan Africa. When seen from above, these cutting-edge projects are stunning and starkly beautiful.

These early markers of a transformation to a more sustainable world are captured in a new collection of photos published in the book Overview Timelapse: How We Change the Earth. Co-author Benjamin Grant says the scale of the innovation on display is indicative of how quickly society can tackle environmental challenges when it is motivated. “If you get the right momentum and the right belief behind a certain idea, change can happen quickly,” says Grant. “And it’s not necessarily all change for the negative, there can be change for the positive as well.”


Transforming Land and Sea for a More Sustainable World
The Oosterscheldekering, translated as the Eastern Scheldt storm surge barrier, is the largest of a series of 13 dams designed to protect the Netherlands from flooding from the North Sea. It was constructed in response to the widespread damage and loss of life due to the North Sea flood of 1953. The barrier spans approximately 5.6 miles and uses large, sliding gate–type doors that can be closed during surging tides.
SOURCE IMAGERY © MAXAR TECHNOLOGIES – WESTMINSTER, COLORADO

The Oosterscheldekering, translated as the Eastern Scheldt storm surge barrier, is the largest of a series of 13 dams designed to protect the Netherlands from flooding from the North Sea. It was constructed in response to the widespread damage and loss of life due to the North Sea flood of 1953. The barrier spans approximately 5.6 miles and uses large, sliding gate–type doors that can be closed during surging tides.


Transforming Land and Sea for a More Sustainable World
A year of progress (2018-2019) in the Great Green Wall initiative, a massive tree-planting initiative that aims to stop the march of desertification in Africa’s Sahel region on the southern edge of the Sahara. In an area impacted by worsening droughts, food scarcity, and climate migration, the project intends to restore 250 million acres of degraded land by 2030 by planting a 5,000-mile tree line, such as this section along the border of Mauritania and Senegal.
SOURCE IMAGERY © MAXAR TECHNOLOGIES – WESTMINSTER, COLORADO

A year of progress (2018-2019) in the Great Green Wall initiative, a massive tree-planting initiative that aims to stop the march of desertification in Africa’s Sahel region on the southern edge of the Sahara. In an area impacted by worsening droughts, food scarcity, and climate migration, the project intends to restore 250 million acres of degraded land by 2030 by planting a 5,000-mile tree line, such as this section along the border of Mauritania and Senegal.


Transforming Land and Sea for a More Sustainable World
Blades for wind turbines grouped together at a manufacturing facility in Little Rock, Arkansas. Individual blades are transported from this facility on top of trucks to wind farms and then assembled on-site. The longest blades seen here are 350 feet long, or 1.3 times the length of a New York City block.
SOURCE IMAGERY © NEARMAP – BARANGAROO, AUSTRALIA

Blades for wind turbines grouped together at a manufacturing facility in Little Rock, Arkansas. Individual blades are transported from this facility on top of trucks to wind farms and then assembled on-site. The longest blades seen here are 350 feet long, or 1.3 times the length of a New York City block.


For decades, the waters of Nanri Island in the South China Sea have been cultivated for the growth of kelp and seaweed and the raising of abalone (large sea snails). Since 2015, offshore wind turbines have been operating amid the fishing nets that surround the Chinese island, with minimal effect on aquaculture production.
SOURCE IMAGERY © MAXAR TECHNOLOGIES – WESTMINSTER, COLORADO

For decades, the waters of Nanri Island in the South China Sea have been cultivated for the growth of kelp and seaweed and the raising of abalone (large sea snails). Since 2015, offshore wind turbines have been operating amid the fishing nets that surround the Chinese island, with minimal effect on aquaculture production.


Transforming Land and Sea for a More Sustainable World
The Fântânele-Cogealac Wind Farm in Romania is the largest onshore wind farm in Europe. The facility is constructed in the midst of canola fields, demonstrating the type of dual-land use possible with renewable energy. With 240 turbines, the wind farm generates 10 percent of Romania’s renewable energy production.
SOURCE IMAGERY © MAXAR TECHNOLOGIES – WESTMINSTER, COLORADO

The Fântânele-Cogealac Wind Farm in Romania is the largest onshore wind farm in Europe. The facility is constructed in the midst of canola fields, demonstrating the type of dual-land use possible with renewable energy. With 240 turbines, the wind farm generates 10 percent of Romania’s renewable energy production.


A before and after look at the installation of solar panels atop the Westmont Distribution Center in San Pedro, California. The 2 million square feet of panels have a bifacial design, meaning they can collect reflected light from the surface of the roof in addition to direct sunlight. This enables the panels to generate up to 45 percent more power than traditional rooftop solar panels and power 5,000 nearby homes.
SOURCE IMAGERY © NEARMAP – BARANGAROO, AUSTRALIA

A before and after look at the installation of solar panels atop the Westmont Distribution Center in San Pedro, California. The 2 million square feet of panels have a bifacial design, meaning they can collect reflected light from the surface of the roof in addition to direct sunlight. This enables the panels to generate up to 45 percent more power than traditional rooftop solar panels and power 5,000 nearby homes.


An aerial view of the $6-billion MOSE system in Venice, Italy, a network of 78 steel gates designed to hold back sea level rise and protect the city from storm surges from the Adriatic Sea. Venice, built on top of a lagoon, already experiences regular flooding as high tides bring water into the city’s streets. The MOSE system, scheduled for completion in 2022, will be capable of stopping tides up to 9.8 feet.
SOURCE IMAGERY © MAXAR TECHNOLOGIES – WESTMINSTER, COLORADO

An aerial view of the $6-billion MOSE system in Venice, Italy, a network of 78 steel gates designed to hold back sea level rise and protect the city from storm surges from the Adriatic Sea. Venice, built on top of a lagoon, already experiences regular flooding as high tides bring water into the city’s streets. The MOSE system, scheduled for completion in 2022, will be capable of stopping tides up to 9.8 feet.


The Sustainable City is a complex in Dubai, United Arab Emirates, built to be the first net-zero-emissions development in the country. The area is home to roughly 2,700 people with housing, offices, retail, health care, and food shopping all on-site. Eleven “biodome” greenhouses generate produce for the complex’s residents, a passive cooling system keeps energy requirements low, and all houses come with solar panels and UV-reflective paint to reduce heat buildup.
SOURCE IMAGERY © MAXAR TECHNOLOGIES – WESTMINSTER, COLORADO

The Sustainable City is a complex in Dubai, United Arab Emirates, built to be the first net-zero-emissions development in the country. The area is home to roughly 2,700 people with housing, offices, retail, health care, and food shopping all on-site. Eleven “biodome” greenhouses generate produce for the complex’s residents, a passive cooling system keeps energy requirements low, and all houses come with solar panels and UV-reflective paint to reduce heat buildup.