Climate vulnerabilities, food security, and resilient development

Climate vulnerabilities, food security, and resilient development

Preeti Kapuria and Debosmita Sarkar in their assertion in the ORF of today, that climate vulnerabilities, food security, and resilient development have some sort of cause to affect relationships elaborated on this article that is worth meditating on. Here it is:

Climate vulnerabilities, food security, and resilient development

Both climate risks and non-climatic drivers need to be factored in to curb food and water shortages induced by climate change in vulnerable regions of the world.

The Sixth Assessment Report (AR6) of the IPCC has estimated an average increase of the order of 1.09°C in global surface temperature over the last decade from the 1850–1900 levels. The AR6 Working Group II (WGII) makes an assessment of climate change impacts and risks as well as adaptations necessary in the context of non-climatic global concerns like biodiversity loss, natural resource extraction, ecosystem degradation, unbridled urbanisation and demographic shifts, rising inequalities, and the most recent COVID-19 pandemic[1].

Recognising the interactions of coupled social, climate, and ecological systems, AR6 draws from the natural, ecological, and social sciences in a way to understand the risks emerging from interactions amongst these coupled systems and offer reasonable solutions for the future—hedging against the risks emanating from such interactions. In WGII, impacts are assessed with respect to exposure, vulnerability, and adaptation including assessments of sustainable development models and the plausibility of climate-resilient development. Adopting climate-resilient development requires transitioning to states that reduce the impacts of climate risks, strengthen adaptation and mitigation actions, and, most importantly, conserve and restore these coupled systems. Accordingly, the report focuses on transformation and system transitions in energy; ecosystems conservation; urban and rural infrastructure; and industry and society.

Adopting climate-resilient development requires transitioning to states that reduce the impacts of climate risks, strengthen adaptation and mitigation actions, and, most importantly, conserve and restore these coupled systems.

A multitude of risks can arise from exposure to climate-related hazards, that have significantly varying impacts across regions, sectors, communities depending upon the vulnerability of the affected human and ecological systems. It can also arise from climate change mitigation or adaptation strategies—a new aspect considered under the risk concept of AR6. Climate change has already induced substantial and increasingly irreversible losses spanning across socio-economic-ecological systems. Frequent high-intensity climate and weather extremes have pushed millions of vulnerable people across regions below the poverty line, confronted with acute food and nutritional insecurity, water scarcity, employment vulnerability and loss of basic livelihoods. Besides, it has also led to higher incidences of food-borne, water-borne, or vector-borne diseases as well as humanitarian crises driven by widespread displacement (forced migration). Most of these impacts have been concentrated in the countries of the Global South and the Arctic region.

As per the estimates of the report around 3.3 to 3.6 billion people, globally, are highly vulnerable to the risks associated with climate change. The global hotspots of human vulnerability are particularly concentrated in the Global South, the Small Island Developing States and the Arctic—regions with extreme poverty, governance challenges, and limited access to resources, violent conflict, and higher engagement rates with climate-sensitive livelihoods.

Major challenges: Food insecurity and water scarcity  

Increased exposure to climate-induced risks have undermined the possibility of achieving food and nutritional security, especially in vulnerable regions of the world. Frequent, high intensity and severe droughts, floods and heatwaves, accompanied by substantial sea-level rise continue to increase such risks, especially for regions with lower adaptive capacity. Higher global warming pathways in the medium-term pose even higher risks to food and nutritional security. Consequently, countries in Sub-Saharan Africa, South Asia, Central and South America, and the Small Islands will remain considerably vulnerable to such risksWith global warming progressively weakening soil health and altering natural processes, a substantial reduction in marine animal biomass and changes in food productivity on land and in the ocean are expected. Reduced water availability and streamflow change in many regions, predominantly in parts of North and South America, the Mediterranean region, and South Asia present some additional challenges to food security.

Frequent, high intensity and severe droughts, floods and heat waves, accompanied by substantial sea-level rise continue to increase such risks, especially for regions with lower adaptive capacity.

As per AR6, around 4 billion out of 7.8 billion people experience severe water shortages for at least one month per year due to interactions of climatic and non-climatic factors. The rising population pressure in the developing countries of Asia, Africa, and the Middle East continues to exacerbate the crisis associated with poor water quality, low availability, limited accessibility, and poor water governance. These regions are, therefore, likely to experience even higher rates of depletion of groundwater resources. In the absence of irrigation and varying rainfall patterns, yields of major crops in semi-arid regions, mainly in the Mediterranean, sub-Saharan Africa, South Asia, and Australia, are already experiencing negative growth.

As for the urban areas, over this decade, almost three-quarters of the urban land across South and Southeast Asian countries is expected to experience high-frequency floods while some parts of Africa may experience severe droughts of similar magnitude. Without adaptation, these water-related impacts of climate change, not only present severe implications for food security but, is likely to contribute to a 0.49 percent in decline in global GDP by 2050, with significant regional variations. Estimates suggest declines to the tune of 14 percent in the Middle East, 11.7 percent in the Sahel, 10.7 percent in Central Asia, and 7 percent in East Asia. Even across countries at different income levels within a region, such water-related impacts are projected to have a differential impact on overall economic growth.

Making the choice: Adopting a climate-resilient development

It is evidently clear that the exposure and vulnerability to climate change-induced risks are strongly influenced by the development trajectories pursued by communities and nations, their patterns of consumption and production, the nature and extent of demographic pressures, and unsustainable use and management of ecosystems and related services. Going forward, meeting food security targets will have to cope with climate risks and non-climatic drivers that continue to cause forest cover degradation (including biodiversity loss), land degradation, desertification, and its submergence (mainly in coastal areas), and unsustainable agricultural expansion, land-use change, and water scarcity.

Almost three-quarters of the urban land across South and Southeast Asian countries is expected to experience high-frequency floods while some parts of Africa may experience severe droughts of similar magnitude.

Greater emphasis will have to be placed on adaptation planning and implementation at a system level that cuts across sectors. In this context, amidst growing public awareness and political cognisance, the WGII  AR6  nudges policymakers and communities to adopt a climate-resilient development pathway, while cautioning against its limits and the plausible impacts of maladaptation. To cite an example from the report, in the context of water-related climate change-associated risks, a complimentary design of non-structural measures like early warning systems; structural measures like levees, enhanced natural water retention through wetlands and rivers restoration; land use planning and forest management; on-farm water storage and management; and, soil conservation and irrigation can be effective in ensuring economic, institutional, and ecological benefits of water. Promoting sustainable food systems and ensuring nutritional security will require community-based adoption of sustainable farming practices, agro-forestry, and ecological restoration and supportive public policies to make it a reality.

Interestingly, AR6 highlights effective and feasible adaptation solutions based on climate justice, entailing distributive and procedural justice complemented by recognition of diverse cultural and social perspectives. Integrated and inclusive system-oriented solutions that are based on equity and justice can reduce risks and enable climate-resilient development. Inclusive processes that strengthen the ability of the nations to contribute to effective adaptation outcomes can enable climate-resilient development.


[1] This article is based on a technical summary of the Working Group II’s contribution to the Intergovernmental Panel on Climate Change’s (IPCC) Sixth Assessment Report, titled “Climate Change 2022: Mitigation of Climate Change”, released on 28th February 2022, announced until 1st October 2021.

Authors

  • Debosmita Sarkar is Research Assistant with the Economy and Growth Programme at ORF Kolkata. Her research interests include macroeconomic policy, international finance and development economics.
  • Preeti Kapuria is currently a Fellow at ORF Kolkata with research interests in the area of environment, development and agriculture. The approach is to understand the linkages between biodiversity, ecosystem functioning, and ecosystem services and to examine how environmental governance, participatory economics and the commons, and the workings of social-ecological systems influence these linkages.

.

Here’re Some Unique Use of Solar Technologies Worldwide

Here’re Some Unique Use of Solar Technologies Worldwide

Here are some unique use of Solar Technologies worldwide proposed by TWC India Edit Team.

Solar Appreciation Day 2022: Here’re Some Unique Use of Solar Technologies Worldwide to Combat Energy Crisis

India’s budget for FY2022-23 clearly highlights the country’s priority to double down for ‘green’ and renewable energy, particularly solar, to combat climate change and meet the emission reduction targets set for 2030.

Moreover, as the Ukraine-Russia war continues, coal and natural gas prices are surging sharply across the globe. With the soaring power bills, several European and Asian countries are seeking alternatives to Russian supplies. And using technologies based on solar energy is a comparative quick fix to the energy crisis.

Meanwhile, Solar Appreciation Day 2022 is here, which is celebrated globally on every second Friday of March. The day has become all the more significant amid the ongoing climate and energy crisis. On this day, here are some unique solar technologies that demonstrate the immense potential of solar technologies to address the needs of the modern world.

Solar trolley invented by a farmer from Haryana

Pradeep Kumar, a farmer from Haryana, has built a mobile solar plant with panels mounted on a trolley that can be moved on demand. The trolley is custom made as per the user’s requirements.

In an interview with The Better India, Pradeep said, “the devices come in two sizes and carry solar panels which provide electricity of 2 HP and 10 HP. The trolley can also be mounted to the back of a tractor and has sturdy wheels that allow it to move over uneven surfaces.”

The cost-effective technology has benefitted over 2000 farmers so far.

Bihar’s floating solar power plant

The Mithila region in North Bihar is called the ‘Land of Ponds’ and is taking complete advantage of its gift. A floating solar plant is set to be commissioned in the region, consisting of 4,004 solar modules. Each module lodged in a pond can generate 505-megawatt peak (MWp) electricity and nearly 2 MW of green and clean energy. The plant can supply electricity to 10,000 people in the state.

The main benefit of a floating solar power plant is that the water cools the solar panels, ensuring their efficiency when temperatures rise, resulting in increased power generation. It also minimises evoporation of freshwater and aids fishery.

This innovation has hit two birds with one stone: producing green energy from solar panels and promoting fish farming underwater.

South Korea’s solar shade

In South Korea, a highway runs between Daejon and Sejong and its entire bike lane on the 32 km stretch is covered with solar roof panels. Not only do they generate sufficient electricity, but they also isolate cyclists from traffic and protect them from the sun.

The two-way bike lane is constructed right in the middle of the road, while there are three other lanes for vehicles to travel on either side. This also obstructs the high beam lights of oncoming cars.

Using the technology, the country can intern produce clean, renewable energy.

Solar-powered desalination technique by Chinese and American researchers

Desalination process is considered to be among the most energy-intensive activities. Now researchers have developed a solar desalination process that can treat contaminated water and generate steam for sterilizing medical instruments without requiring any power source other than sunlight itself.

The design includes a dark material that absorbs the sun’s heat and a thin water layer above a perforated material that sits atop a deep reservoir of salty water such as a tank or a pond. The holes allow for a natural convective circulation between the warmer upper layer of water and the colder reservoir below and draw the salt from the water.

Not only is the solar-powered desalination method efficient but also highly cost-effective.

Saudi Arabia’s goal of sustainable development using solar technology

Here're Some Unique Use of Solar Technologies Worldwide
FILE PHOTO: A solar plant is seen in Uyayna, north of Riyadh, Saudi Arabia April 10, 2018. Picture taken April 10, 2018. REUTERS/Faisal Al Nasser

Dry-climate arid regions are prone to droughts and often face water scarcity. While local food production would have been a distant dream for countries that host mostly deserts, scientists in Saudi Arabia have developed a unique solution using solar technology.

In an experiment, they designed a solar-driven system that could successfully cultivate spinach using water drawn from the air while producing electricity. This proof-of-concept design has demonstrated a sustainable, low-cost strategy to improve food and water security for people living in dry-climate regions.

“Our goal is to create an integrated system of clean energy, water, and food production, especially the water-creation part in our design, which sets us apart from current agrophotovoltaics,” says senior researcher Peng Wang.

**

For weather, science, and COVID-19 updates on the go, download The Weather Channel App (on Android and iOS store).

The top image is for illustration and is of a Solar power plant (IANS)

Renewables Market to Expand Robustly in 2021

Renewables Market to Expand Robustly in 2021

Renewables Market to Expand Robustly in 2021 by Nidhi is published on MW Creators of 4 December 2021. Some details of this renewables market particularly amongst certain MENA nations are reviewed and found to Expand Robustly in 2021. Excerpts are below.

The above image is for illustration and is of Enterprise as related to the same topic.

It is the Latest Study on the Industrial Growth of the Middle East and North Africa (MENA) Renewables Market 2021-2027.

A detailed study accumulated to offer Latest insights about acute features of the MENA’s Renewables market. The report contains different market predictions related to revenue size, production, CAGR, Consumption, gross margin, price, and other substantial factors. While emphasizing the key driving and restraining forces for this market, the report also offers a complete study of the future trends and developments of the market. It also examines the role of the leading market players involved in the industry including their corporate overview, financial summary and SWOT analysis.

Get customization & check discount for report @ https://www.htfmarketreport.com/request-discount/2909324-middle-east-and-north-africa-2

Summary

The report provides a comprehensive review of the trends, opportunities and challenges in Middle East’s fast-changing renewable energy sector. Updated in April 2020 to reflect the huge disruption caused by the Covid-19 pandemic, the report looks at the immediate impact of the virus on the regional energy market, and its impact on the region’s ambitious plans to develop solar, wind and waste-to-energy projects in the region. The report looks at the long-term investment plans as well as the current project opportunities planned or under development across the region.

Mena Renewables 2020 with Covid-19 update is the latest premium market report from MEED, the leading provider of Middle East business intelligence.

The report provides a comprehensive country-by-country review of the renewable energy sector across the Mena region with in-depth analysis of projected investments, policy and legislative frameworks, and the projects planned and under way.

It also details the key government bodies driving the development of renewables in each country.

Written by MEED, the Middle East market experts within the HTF MI Group, the report is a valuable asset for anyone seeking to do business in the Middle East’s energy sector that will help in shaping business development and strategy in the region.

Updated in April 2020, the report looks at the impact of Covid-19 on the renewable energy sector in the Middle East and North Africa, and what that means for business and investment in the region.

Middle East renewable energy ambitions face new challenges

The de-facto shutdown of much of the global economy in the first four months of 2020 caused by measures to stop the spread of coronavirus (Covid-19) is challenging many of the drivers of business growth and investment in the Middle East and North Africa. The collapse of oil prices and fall in tourism and consumer spending has raised deep questions about some of the region’s highest growth sectors.

One sector that shows no sign of disappearing is renewables. While the supply chain for projects has been disrupted, and the commercial model for privately finance power plants has been upset, the region remains committed to diversifying is energy sources and lowering its costs through renewables.

With about 28GW of renewable energy production capacity installed across the Middle East and North Africa (Mena), of which by far the biggest component is hydropower with 21GW, renewable energy represents only 7 per cent of the region’s power generation capacity. But with electricity demand rising at about 5 per cent a year, and with a shortage of readily available natural gas supplies, expanding renewables capacity is now one of the top policy priorities for governments in the region.

Boosted by falling technology costs and the drive to reduce carbon dioxide emissions, most countries are planning and procuring solar and wind projects. Across the region, governments have set ambitious clean energy targets, with Dubai the most aggressive, aiming for 75 per cent of its energy to come from clean sources by 2050. At the start of 2020, about 98GW of new renewable energy generation capacity was planned across the region, with 39GW of additional capacity due to come on stream by 2025.

The latest edition of Abu Dhabi’s World Future Energy Summit (WFES) in January 2020, highlighted the strides that have been taken in the region, and particularly by the UAE, to play a leading role in the transition from unsustainable carbon-production to sustainable renewable energy.

Completion of the GCC’s first utility-scale renewables projects has increased confidence among governments, developers and financiers. This has reduced the cost of financing and delivering projects. The market also expects greater adoption of small and medium-scale schemes such as rooftop solar.

At present, it is countries with hydropower capabilities that have the highest renewables capacity. The landscape is changing rapidly however as a series of large-scale solar and wind projects are being delivered. But as renewables move from the fringes to the centre of the region’s energy eco-system, regulators, investors and consumers must overcome several structural and technical obstacles.

Regulatory reform is the biggest challenge facing renewables. Merging renewable energy, primarily photovoltaic solar power, into power grids requires policy adjustments and new regulations. This includes ensuring grid flexibility and stability, integrating new technologies such as battery-storage and electric vehicles, and establishing commercially-attractive business models. Another challenge is to break the link between electricity and water production that is hard-coded into the region’s utilities.

Request a sample report @ https://www.htfmarketreport.com/sample-report/2909324-middle-east-and-north-africa-2

.

Accelerated renewables-based electrification paves the way for a post-fossil future

Accelerated renewables-based electrification paves the way for a post-fossil future

The hydrocarbon producing countries of the MENA region believe in their preeminent albeit shrinking source of revenues for decades. But, as shown by some counties of the Gulf net-zero recent pledge, they see economic and political opportunities in moving to the green energy transition. Accelerated renewables-based electrification paves the way for a post-fossil future by Nature Energy explains how the world and particularly the EU in order to achieve its climate and geopolitical goals, it will need to substantially increase its engagement with Gulf states.

The image above is for illustration and is about how Fossil Fuel Jobs Will Disappear, So Now What?

Accelerated renewables-based electrification paves the way for a post-fossil future

The research was published in Nature Energy.

Accelerated renewables-based electrification paves the way for a post-fossil future
Credit: CC0 Public Domain

Cost-slashing innovations are underway in the electric power sector and could give electricity the lead over fossil-based combustion fuels in the world’s energy supply by mid-century. When combined with a global carbon price, these developments can catalyze emission reductions to reach the Paris climate targets, while reducing the need for controversial negative emissions, a new study finds.

“Today, 80 percent of all energy demands for industry, mobility or heating buildings is met by burning—mostly fossil—fuels directly, and only 20 percent by electricity. Our research finds that relation can be pretty much reversed by 2050, making the easy-to-decarbonise electricity the mainstay of global energy supply,” says Gunnar Luderer, author of the new study and researcher the Potsdam Institute for Climate Impact Research. “For the longest time, fossil fuels were cheap and accessible, whilst electricity was the precious and pricier source of energy. Renewable electricity generation—especially from solar photovoltaics—has become cheaper at breath-taking speed, a pace that most climate models have so far underestimated. Over the last decade, alone prices for solar electricity fell by 80 percent, and further cost reductions are expected in the future. This development has the potential to fundamentally revolutionize energy systems. Our computer simulations show that together with global carbon pricing, green electricity can become the cheapest form of energy by 2050, and supply up to three quarters of all demand.”

The reasons lie mainly in the ground-breaking technological progress in solar and wind power generation, but also, in the end, uses of electric energy. Costs per kilowatt hour solar or wind power are steeply falling while battery technology e.g. in cars is improving at great speed. Heat pumps use less energy per unit of heat output than any type of boiler and are becoming increasingly competitive not only in buildings, but also in industrial applications. “You can electrify more end-uses than you think and for those cases actually reduce the energy consumption compared to current levels,” explains Silvia Madeddu, co-author and also researcher at the Potsdam Institute.

“Take steel production: Electrifying the melting of recycled steel, the so-called secondary steel, reduces the total process energy required and lowers the carbon intensity per ton of steel produced,” says Madeddu. “All in all, we find that more than half of all energy demand from industry can be electrified by 2050.” However, some bottlenecks to electrification do remain, the researchers point out. Slowest in the race to decarbonisation are long-haul aviation, shipping, and chemical feedstocks, i.e. fossil fuels used as raw materials in chemicals production.

Limiting the reliance on negative emissions

The scale of the technological progress holds great opportunities for countries to leapfrog and for investors alike. However, not every technology is a success story so far. “In this study, we constrained the reliance on technologies which aim at taking carbon out of the atmosphere, simply because they have proven to be more difficult to scale than previously anticipated: Carbon Capture and Storage has not seen the sharp fall in costs that, say, solar power has. Biomass, in turn, crucially competes with food production for land use,” Luderer lays out. “Interestingly, we found that the accelerated electrification of energy demands can more than compensate for a shortfall of biomass and CCS, still keeping the 1.5 degrees Celsius goal within reach while reducing land requirements for energy crops by two thirds.”

Era of electricity will come—but global climate policy must accelerate it to meet climate goals

“The era of electricity will come either way. But only sweeping regulation of fossil fuels across sectors and world regions—most importantly some form of carbon pricing—can ensure it happens in due time to reach 1.5 degrees,” Luderer says. Indeed, the simulations show that even if no climate policy at all is enacted, electricity will double in share over the course of the century. Yet in order to meet the goals of the Paris Agreement of limiting global warming to well below two degrees, decisive and global political coordination is crucial: pricing carbon, scrapping levies on electricity, expanding grid infrastructure, and redesigning electricity markets to reward storage and flexible demands. Here, hydrogen will be a crucial chain link, as it can flexibly convert renewable electricity into green fuels for sectors that cannot be electrified directly. “If these elements come together, the prospects of a renewables-based green energy future look truly electrifying,” says Luderer.

.

The MENA Region: A Key Scenario for the Energy Transition

The MENA Region: A Key Scenario for the Energy Transition

A Key Scenario for the Energy Transition in the MENA Region written by Roberto Vigotti could be a time-saver for all countries producing and nonproducing alike of hydrocarbon resources. Or as proposed by the IEA, it is a matter of Supporting the Middle East and North Africa countries to help them diversify their economies towards clean and low-carbon energy

The operations of the COP26 were closed just a couple of weeks ago, and it is now time to reflect upon relevant takeaways and how to translate them into action. Despite not being the theatre of the bold breakthrough we wished to see, Glasgow reiterated the importance of some key recommendations that, to this day, are our sharpest weapon in the fight against climate change: limiting the growth of the average temperature of the Earth below 1,5 °C, cutting by 45% the CO2 emissions before 2030, and pushing for a quick and worldwide deployment of renewable energy sources, acknowledging the importance of developing countries.

One of the clue scenarios of the recommended transformations is and will be the MENA region, for some self-explanatory reasons: MENA countries are endowed with an enormous renewable energy potential and a steady growth in their internal energy demand, making them illustrious candidates to lead the so yearned global energy transformation. This belief is reinforced by a positive trend of growth of some renewable energy sources in the Mediterranean countries: in the last decade, solar and wind power grew from less than 6% to 35% in the total amount of deployed renewables.

Nonetheless, the MENA’s contribution to the energy transition is still negligible: its share of renewable energy sources amounts to just 1% of the REs installed globally in the last 10 years with the lion’s share in the national energy mixes still being owned by fossil fuels. The data speak loud and clear: the majority of locally generated energy is based on gas and oil, which respectively amount to 72% and 20% of the total. In addition to the obvious environmental repercussions, the economy and internal welfare of many MENA countries is still tightly bound to fossil fuels, which provide more than a half of the national fiscal revenues in many countries (peaking In Kuwait, with approximately 90%), and are still largely financed by public institutions. Finally, the situation is worsened by the vulnerability to climate change: the local environmental features are a natural pre-condition for extreme weather phenomena, such as droughts, temperature raise, etc.

Hence, many trends of the MENA region appear to be in stark contrast with the recommendations outlined in the COP26, despite some isolated encouraging changes. It is urgent and overriding for local decision-makers to drastically re-shape the local approach to generation, transmission and distribution of energy, as well as related policy frameworks and market segments.

In this direction goes the last report produced by RES4Africa Foundation (“Connecting the Dots, 10 Years of Renewable Energy in MENA: What Has (not) Happened?”). In addition to portraying the current energy status quo of the MENA region, the analysis advocates for a fact-based shift towards renewable energy. The starting point would be the formulation and implementation of far-sighted energy policies, characterised by an adequate degree of boldness without losing touch with the reality: bright examples are Morocco, Jordan and Egypt. The regulatory framework should also be welcoming for private investments in REs, which are crucial to expand the energy access while simultaneously pushing for innovation, exchange of best practices, and a stimulation towards digitalisation and efficiency in MENA energy infrastructures. Complementary to these reforms should be safeguarding the transparency of local markets, thanks to new independent energy institutions and clear tender procedures.

The final step of such a virtuous process will be a progressive reduction of subsidies dedicated to fossil fuels: it is an ambitious and tricky target, especially considering the fact that a consistent part of oil and gas sources In MENA countries is still unexploited. However, we are confident that the renewable sector, if properly boosted and reformed, will provide incommensurably higher benefits, creating fertile soil for the energy transition and its related social and economic improvements.

This goal can be achieved just with a constant and structure cooperation with the MENA countries: let’s roll up our sleeves and work together for a sustainable tomorrow.

Roberto Vigotti

Roberto Vigotti is the Secretary General of RES4Africa Foundation, which gathers more than 30 stakeholders to accelerate the renewable energy transformation in Africa, with Africa and for Africa. In his 30+ year-long career he has covered various positions at Enel, University of Pisa, IEA and IRENA. When it was still considered an unlikely option, he was already convinced that deploying renewable energy in Africa would result in a positive socioeconomic impact for its population. In 2012, he therefore embarked on the RES4Africa adventure, to support a wider participation of private players in delivering investments in Africa. He also coordinates renewAfrica, an industry-backed Initiative that advocates the creation of a European comprehensive Programme for RE investments in Africa, to be promoted and owned by EU institutions

.