30MW Sidi Mansour wind farm in Tunisia

30MW Sidi Mansour wind farm in Tunisia

Climate Fund Managers (CFM) and UPC Renewables (UPC) will develop a 30MW Sidi Mansour wind farm in Tunisia. It is reported on African Review of 24 July 2020.

This Sidi Mansour Project is meant to help Tunisia reduce its imports of fossil fuels. It announced earlier on in 2016 the launch of its solar energy plan, to make its electricity generation mix through renewables ten-fold to 30%.

Tunisia boosting renewable energy drive

30MW Sidi Mansour wind farm in Tunisia
The Sidi Mansour Wind Project is set to assist Tunisia in meeting its renewable energy goals. (Image source: Free-Photos/Pixabay)

The project will be one of the first wind independent power producers (IPP) in the country. Climate Fund Managers is participating as co-developer, sponsor, financial advisor and E&S advisor to the project, through the development and construction financing facility under its management, Climate Investor One (CI1). 

UPC will lead the development of the project with its local team that will lead land securitisation, permitting, grid connection, wind resource assessment and engineering and procurement contracts.

“We can start the construction of the Sidi Mansour wind farm in 2020, helping stimulate the Tunisian economy, create local jobs and a social plan for local communities while respecting international environmental protection guidelines,” said Brian Caffyn, chairman of the UPC Group.

The Sidi Mansour Wind Project is set to assist Tunisia in meeting its renewable energy goals. “As potentially the first Wind IPP in Tunisia, this project will be a testament to how CI1’s full lifecycle financing solution can unlock investment in renewable energy in new markets,” according to Sebastian Surie, regional head of Africa for CFM.

In January 2019, UPC was selected as one of the four awarded companies under the “Authorisation Scheme” tender for its 30MW Sidi Mansour project in Northern Tunisia and subsequently signed a PPA with Société Tunisienne d’Electricité et du Gaz. Over its lifespan, the Sidi Mansour Project is expected to lead to a reduction of 56,645 tonnes equivalent of carbon and create more than 100 jobs. The total investment size of the project is expected to be approximately US$40mn.

Multi-million national green growth plan launched

Multi-million national green growth plan launched

A Multi-million national green growth plan launched today is reported in this article of the Jordan News Agency.

Amman, July 6 (Petra) — Jordan on Monday launched a multi-million ambitious green growth plan as part of a broader national drive towards a green economy and sustainable development.

The six-pronged 2021-2025 National Green Growth Plan, which was announced by Minister of Environment and Agriculture Saleh Kharabsheh, comprises executive plans targeting the key sectors of water, waste management, energy, agriculture, tourism and transport.

In part, the blueprint is intended to help build sustainable sectors that are more resilient and adaptive to adverse phenomena, including climate change and the fallout of emergencies, such as the coronavirus pandemic. It was drawn up in collaboration with the Global Green Growth Institute (GGGI).

Kharabsheh told a teleconference with government representatives and global stakeholders that the plan is designed to ensure alignment between green growth, climate change and sustainable development goals within the sectoral strategic framework.



Marshall Brown, Senior Officer/ Jordan Program at the GGGI, underlined the importance of multi-stakeholder cooperation to translate the plan on the ground, and said that the private sector and international partners have a key role to support this effort.

In the energy sector, the plan envisages the development of a smart electric grid, backing the Jordan Renewable Energy and Energy Efficiency Fund’s bid for the Green Climate Fund’s accreditation and a public-private partnership for the construction of EV charging stations at a total cost of $85 million.

The plan sets $965 million as the total cost of water projects, which include the rollout of a financial mechanism to support water harvesting projects, in addition to carrying out a technical project to rationalize industrial water use. Also in the water sector, the plan envisages the construction of an industrial wastewater treatment plant in Zarqa.

With regard to waste management, the plan includes the establishment of an excellence center for waste management, research and development, a feasibility study for the launch of projects aimed at separating organics from municipal solid waste, and finally a pilot project on the extended producer responsibility in the e-waste sector. The total cost of projects in the waste management sector is put at $248 million.

Turning to agriculture, the plan includes an information management and communication capacity-building project within the green growth framework. It also pursues a resource management project in the production of olive and olive oil. Other key projects in this area includes investing in hydroponics and a national afforestation project. The combined cost of these projects stands at $194 million.

Another key focus of the plan is the transport sector, where the total project cost is envisioned at $167 million. The projects in this domain include the rollout of smart transport systems, the establishment of a transport excellence center and the introduction of environmentally-friendly transport solutions in Irbid, Zarqa and Madaba.

As for tourism, the plan contains a set of ambitious projects, which include the establishment of an excellence center aimed at developing the tourism industry and maximizing ecotourism in protected areas, as well as a project for resource rationalization in the tourism and hospitality sectors for a total cost of $173 million.

//Petra// AA

Is green hydrogen the sustainable fuel of the future?

Is green hydrogen the sustainable fuel of the future?

Vanora Bennett with her question: ‘Is green hydrogen the sustainable fuel of the future?’ looks at the whole range of possibilities that such clean alternative to the fossil fuels.

European Bank for #reconstruction and Development, 22 June 2020

Imagine a clean alternative to fossil fuels, one that leaves no greenhouse gas residues and even, unlike solar and wind renewables, can be used at any moment of the day or night, whatever the weather conditions.

Imagine that using it instead of fossil fuels sharply reins in the harmful emissions raising global temperatures, helping the world to solve the climate crisis.

This is not a fairy story. This gas exists. It’s called green hydrogen, and is made by using clean electricity from renewable energy technologies to electrolyse water (H2O), separating the hydrogen atom within it from its molecular twin oxygen.

The catch has always been that the cost of making green hydrogen prices it out of competition with fossil fuels, because, even if it is carbon-free, it is energy-intensive. But that is changing, because, for the past two years, improvements in renewable energy technology have seen renewable electricity costs plummet.

Now, as the world plans economic recovery efforts after the coronavirus pandemic, and trillions of dollars and euro are readied to invest in build-back-better approaches, an increasing number of scientists and policymakers are saying green hydrogen’s time has come to be brought fully into the energy mix of the future.

They’re advocating investing in stimulating production, both to tackle the economic fallout of this year’s pandemic and to build a future without fear of climate cataclysm.

“Important emerging elements of clean energy progress – hydrogen electrolysers and lithium-ion batteries – are on the verge of becoming the decade’s breakout technologies. These technologies should play a key role in bolstering Europe’s transport and industry as the continent emerges from the crisis and looks to develop new advanced manufacturing for export,” the International Energy Agency’s executive director Fatih Birol and Frans Timmermans, executive vice-president of the European Commission, wrote in May.

“If the EU seizes this opportunity, it will give itself a cutting edge on global markets,” Birol and Timmerman concluded.

Their editorial – as well as reported comments by Birol that green hydrogen technology was “ready for the big time” and that governments should channel investments into the field – came as the European Union prepared to publish its own hydrogen strategy while implementing the European Green Deal plan to reduce net emissions to zero by 2050.

The pace of discussion on green hydrogen has picked up, especially since the outbreak of coronavirus.

Governments including those of Germany, Britain, Australia and Japan are working on or have announced hydrogen strategies. Australia has set aside A$300 million ($191 million) to jumpstart hydrogen projects. Portugal plans a new solar-powered hydrogen plant which will produce hydrogen by electrolysis by 2023. The Netherlands unveiled a hydrogen strategy in late March, outlining plans for 500 megawatts (MW) of green electrolyser capacity by 2025.

“We could use these circumstances, where loads of public money are going to be needed into the energy system, to jump forward towards a hydrogen economy,” said Diederik Samsom, who heads the European Commission’s climate cabinet. This could result in hydrogen use scaling up faster than was expected before the pandemic, he was quoted by Reuters as saying.

Most of the hydrogen produced today is not green. The gas is colour-coded according to the way it is produced, says the EBRD’s Christian Carraretto.

“The hydrogen that the world uses today is made from either coal or natural gas. This hydrogen is carbon-intensive, it’s not a green fuel. It’s called grey hydrogen if it comes from gas, while the hydrogen produced from coal is called black. Then there is blue hydrogen, an upgrade of the grey, where the CO2 emitted is captured upstream, so the system doesn’t emit CO2 in the atmosphere.”

The European Commission has earmarked clean hydrogen – a loose term which can include gas-based hydrogen, if fitted with technology to capture the resulting emissions, as well as green hydrogen – as a “priority area” for industry in its Green Deal.

If clean hydrogen does start to play a bigger part in the world’s energy mix, incorporating it will be technically relatively easy, Mr Carraretto said, as the infrastructure already built to carry natural gas can also carry hydrogen.

He said a recent study had shown 70 per cent of Italy’s gas network would be hydrogen-ready if there were enough hydrogen being produced to be carried down its pipes. It could be used in both homes and industry without radical change. 

“Clean hydrogen is what the EU think is the solution to deliver on decarbonised fuels. And the reason why it’s important is that not all economic activities can move to renewables only. There are some sectors that are typically hard to decarbonise – sectors like steel, or chemical industries, or to some extent aviation – which will still use fuels in their systems.

“So either they are stuck with the cleanest of the fossil fuels or they switch to decarbonised fuels like hydrogen or biogas. Biogas is a mainstream technology and it hasn’t really picked up a lot because there is an issue with availability of organic wastes. So hydrogen is what we see as the most promising option at this moment.”

There remains the question of prices. Today, hydrogen made from fossil fuels costs between $1-$1.8/kg. Green hydrogen can cost around $3-$6/kg, making it significantly more expensive than the fossil fuel alternatives.

However, increased demand could reduce the cost of electrolysis. Coupled with falling renewable energy costs, green hydrogen could fall to $1.5/kg by 2050 and possibly sub-$1/kg, making it competitive with natural gas. Higher carbon prices would also encourage the shift.

Mr Carraretto said: “Here we are probably in the same situation as we were a decade or two ago with renewable energy, where this solution is still more expensive than the alternatives. But even today it’s only two or three times more expensive, it’s not 100 times more expensive, so if things keep going and if there is policy push going forward, our expectation that it will become really cost-competitive soon.

“And that’s why we see a lot of big players looking at it, pilot projects happening everywhere.”

“What is also exciting is that with the recent dramatic fall in renewable energy prices – particularly in the southern and eastern Mediterranean countries where we work, and potentially with offshore wind being developed in countries from Turkey to Poland and Greece, too – these countries could become sources of production of green hydrogen, with projects we could consider investing in, within a few years,” Mr Carraretto added. “This is really on the edge of becoming a game-changer”.

Record-tall Wind Turbine Towers with 3D-printed Concrete Bases

Record-tall Wind Turbine Towers with 3D-printed Concrete Bases


WEBWIRE  in its 17 June 2020 article on GE Renewable Energy, COBOD and LafargeHolcim co-develop record-tall wind turbine towers with 3D-printed concrete bases dated Wednesday, June 17, 2020 could a definite step forward on the way towards clean energy.

Record-tall Wind Turbine Towers with 3D-printed Concrete Bases
  • Historic multi-year collaboration between three leaders in their industry to increase renewable energy production and use
  • Wind turbine towers have typically been limited to a height of under 100 meters, as they are traditionally built in steel or precast concrete
  • Printing the base directly on-site with 3D-printed concrete technology will enable the creation of larger bases and cost-effective taller hybrid towers, reaching up to 200 meters
  • Taller towers capture stronger winds, thereby generating more energy at a lower cost
  • First prototype successfully printed in October 2019

GE Renewable Energy, COBOD and LafargeHolcim announced today that they will partner to co-develop wind turbines with optimized 3D printed concrete bases, reaching record heights up to 200 meters. The three partners will undertake a multi-year collaboration to develop this innovative solution, which will increase renewable energy production while lowering the Levelized Cost of Energy (LCOE) and optimizing construction costs. The partners will produce ultimately a wind turbine prototype with a printed pedestal, and a production ready printer and materials range to scale up production. The first prototype, a 10-meter high tower pedestal, was successfully printed in October 2019 in Copenhagen. By exploring ways to economically develop taller towers that capture stronger winds, the three partners aim to generate more renewable energy per turbine.

Building on the industry-leading expertise of each partner, this collaboration aims to accelerate the access and use of renewable energy worldwide. GE Renewable Energy will provide expertise related to the design, manufacture and commercialization of wind turbines, COBOD will focus on the robotics automation and 3D printing and LafargeHolcim will design the tailor-made concrete material, its processing and application.

“Concrete 3D printing is a very promising technology for us, as its incredible design flexibility expands the realm of construction possibilities. Being both a user and promoter of clean energy, we are delighted to be putting our material and design expertise to work in this groundbreaking project, enabling cost efficient construction of tall wind turbine towers and accelerating access to renewable energy,” explained Edelio Bermejo, Head of R&D for LafargeHolcim.

Henrik Lund-Nielsen, founder of COBOD International A/S added: “We are extremely proud to be working with world-class companies like GE Renewable Energy and LafargeHolcim. With our groundbreaking 3D printing technology combined with the competence and resources of our partners, we are convinced that this disruptive move within the wind turbines industry will help drive lower costs and faster execution times, to benefit customers and lower the CO2 footprint from the production of energy.

“3D printing is in GE’s DNA and we believe that Large Format Additive Manufacturing will bring disruptive potential to the Wind Industry. Concrete printing has advanced significantly over the last five years and we believe is getting closer to have real application in the industrial world. We are committed to taking full advantage of this technology both from the design flexibility it allows as well as for the logistic simplification it enables on such massive components,” said Matteo Bellucci Advanced Manufacturing Technology Leader for GE Renewable Energy.

Traditionally built in steel or precast concrete, wind turbine towers have typically been limited to a height of under 100 meters, as the width of the base cannot exceed the 4.5-meter diameter that can be transported by road, without excessive additional costs. Printing a variable height base directly on-site with 3D-printed concrete technology will enable the construction of towers up to 150 to 200 meters tall. Typically, a 5 MW turbine at 80 meters generates, yearly, 15.1 GWh. In comparison, the same turbine at 160 meters would generate 20.2 GWh, or more than 33% extra power.

About LafargeHolcim
LafargeHolcim is the global leader in building materials and solutions and active in four business segments: Cement, Aggregates, Ready-Mix Concrete and Solutions & Products. Its ambition is to lead the industry in reducing carbon emissions and shifting towards low-carbon construction. With the strongest R&D organization in the industry, the company seeks to constantly introduce and promote high-quality and sustainable building materials and solutions to its customers worldwide – whether individual homebuilders or developers of major infrastructure projects. LafargeHolcim employs over 70,000 employees in over 70 countries and has a portfolio that is equally balanced between developing and mature markets.

About COBOD International A/S
COBOD International is a globally leading 3D construction printing company, supplying 3D construction printing technology to customers in Asia, The Middle East, Europe and the US. COBOD intent to disrupt the construction industry and any industry where concrete structures are being applied. COBOD has made headlines multiple times the last couple of years from the 3D printing of the first fully permitted building in Europe in 2017, over the delivery of the largest construction printer in the world measuring 27 meters in length and 10 meter in height to the live 3D printing of a small house per day during the Bautec, a German construction exhibition. German Peri Group, the leading provider of manual concrete casting form work equipment is a minority shareholder of COBOD. Follow us on www.COBOD.com

About GE Renewable Energy
GE Renewable Energy is a $15 billion business which combines one of the broadest portfolios in the renewable energy industry to provide end-to-end solutions for our customers demanding reliable and affordable green power. Combining onshore and offshore wind, blades, hydro, storage, utility-scale solar, and grid solutions as well as hybrid renewables and digital services offerings, GE Renewable Energy has installed more than 400+ gigawatts of clean renewable energy and equipped more than 90 percent of utilities worldwide with its grid solutions. With nearly 40,000 employees present in more than 80 countries, GE Renewable Energy creates value for customers seeking to power the world with affordable, reliable and sustainable green electrons.

Follow these at :

www.ge.com/renewableenergy on www.linkedin.com/company/gerenewableenergy 

or on www.twitter.com/GErenewables

and 3D concrete printing at LafargeHolcim

1.35 cents/kWh: Record Abu Dhabi solar bid

1.35 cents/kWh: Record Abu Dhabi solar bid

Posted on June 7, 2020 and written by Carlo Ombello who discusses how at 1.35 cents/kWh: Record Abu Dhabi solar bid is a sober reminder to upbeat fossil fuel pundits


A rather meaningful piece of energy news went almost unnoticed in recent weeks. The Abu Dhabi Power Corporation announced the lowest tariff for solar energy in the world. The new record came as the winning bid for the upcoming 2 GW solar power plant, the Al Dhafra Solar PV project, set the world’s most cost-competitive tariff for solar PV energy, at USD 1.35 cents/kWh (AED 4.97 fils/kWh in local currency). This is approximately 44% lower than the tariff set just three years ago for the ‘Noor Abu Dhabi’ project – Abu Dhabi’s first large-scale solar 1.2GW PV project and a world record tariff-setter at the time – which commenced its commercial operation back in April 2019.

The gigantic photovoltaic power plant is scheduled to come online in mid-2022. Expected to cover an area of 20 square kilometers, it will almost triple Abu Dhabi’s solar power generation to 3.2 GW and help the Emirate state achieve its 2030 goal to reduce carbon intensity by 70% compared to 2015. This single addition could on its own supply almost 3% of the entire United Arab Emirates annual electricity demand (~127 TWh in 2018). The Al Dhafra and Noor projects firmly position Abu Dhabi among the leading regions of the world for solar power adoption and price benchmark. To better appreciate the competitiveness of this bid, it’s worth noting that even old and fully depreciated coal power plants have LCOE values around USD 3.3 cents/kWh (see Lazard’s Levelized Cost of Energy 2019).

But why would this piece of news matter? Surely this is a geographical exception, a sunny oasis in a world otherwise dominated by cheap fossil fuels, a result that cannot be replicated worldwide. Well, not really. While the Middle East is naturally bound to become a solar powerhouse in the coming years – its wide desert areas and sunny climate result in typical PV load factors above 1800 kWh/kWp installed – high levels of solar irradiance are actually available throughout the world within a broad range of latitudes. A beautiful map from Global Solar Atlas is worth a thousand words.

As global data show, a vast portion of the planet is in fact ripe for exploitation with ultra-cheap solar power. And the news from the Emirates are indeed echoed by comparable prices set elsewhere over the past year, from Europe to America. The previous solar tariff record belonged to Portugal: the southern European country claimed the spot in July 2019, at about USD 1.64 cents/kWh for a 150 MW project. 211 MW of PV capacity were signed at USD 1.75 cents/kWh in Brazil just weeks before that, while a sub-2 cents/kWh bid was also presented in the same period for the Los Angeles Eland Solar & Storage Center project in Kern County, California (the final version of the project will in fact be a 300 MW / 1.2 GWh energy storage installation – with an aggregate price of USD 3.962 cents/kWh for dispatchable power).

At the levels being reached by utility-scale solar, even northern, rainy countries such as the UK – with half the solar irradiance of the Emirates – could soon see projects achieve LCOEs below USD 3 cents/kWh (if they are not beat by cheaper wind power at those latitudes). We are now at a point where economics alone is the main factor driving the energy transition towards sustainability. With an annual global growth hovering around the 100 GW mark before the coronavirus crisis, solar power is now poised for a long-term additional boost through favourable economic recovery policies planned by most governments around the world. The unfolding economic crisis, likely to push down solar capital costs even further, will only make the PV market even more attractive. Cheap large-scale battery storage, whether coupled to these projects or as stand-alone peaker plants replacement, will be the natural ally.

With the global financial community increasing its focus on fossil fuel divestment and sustainability, we can expect the booming utility-scale solar market to mark its presence in all continents at increasing pace. Investors with deep pockets, looking for stable and predictable returns at a time of increasing uncertainty and change, will safely bet on massive renewable energy developments for reliable returns on their portfolios, while avoiding the volatility and risk involved with projects in the incumbent sources of energy.

As the fossil fuel industry struggles in the wake of the coronavirus emergency, all its hope lies on a swift, permanent and unlikely recovery to higher prices to maintain its presence. An ironic plan with, ultimately, little chance of success.This entry was posted in Clean Energy. Bookmark the permalink.← In April lockdown, Italy’s car market stares into the abyss – but not BEVs

One Response to 1.35 cents/kWh: Record Abu Dhabi solar bid is a sober reminder to upbeat fossil fuel pundits

  1. Pingback: 1.35 Cents/kWh: Record Abu Dhabi Solar Bid Is A Sober Reminder To Upbeat Fossil Fuel Pundits | CleanTechnica
Renewables Increasingly Beat Even Cheapest Coal Competitors on Cost

Renewables Increasingly Beat Even Cheapest Coal Competitors on Cost

IRENA‘s Press Release on the fact that today Renewables Increasingly Beat Even Cheapest Coal Competitors on Cost could be considered quite a change from the 100 years or so history of hydrocarbon generated energy. Renewables started winning the Economics battle for the last couple of years.


Competitive power generation costs make investment in renewables highly attractive as countries target economic recovery from COVID-19, new IRENA report finds.


Abu Dhabi, United Arab Emirates, 2 June 2020 — Renewable power is increasingly cheaper than any new electricity capacity based on fossil fuels, a new report by the International Renewable Energy Agency (IRENA) published today finds. Renewable Power Generation Costs in 2019 shows that more than half of the renewable capacity added in 2019 achieved lower power costs than the cheapest new coal plants. 

The report highlights that new renewable power generation projects now increasingly undercut existing coal-fired plants. On average, new solar photovoltaic (PV) and onshore wind power cost less than keeping many existing coal plants in operation, and auction results show this trend accelerating – reinforcing the case to phase-out coal entirely. Next year, up to 1 200 gigawatts (GW) of existing coal capacity could cost more to operate than the cost of new utility-scale solar PV, the report shows. 

Replacing the costliest 500 GW of coal with solar PV and onshore wind next year would cut power system costs by up to USD 23 billion every year and reduce annual emissions by around 1.8 gigatons (Gt) of carbon dioxide (CO2), equivalent to 5% of total global CO2 emissions in 2019. It would also yield an investment stimulus of USD 940 billion, which is equal to around 1% of global GDP.

“We have reached an important turning point in the energy transition. The case for new and much of the existing coal power generation, is both environmentally and economically unjustifiable,” said Francesco La Camera, Director-General of IRENA. “Renewable energy is increasingly the cheapest source of new electricity, offering tremendous potential to stimulate the global economy and get people back to work. Renewable investments are stable, cost-effective and attractive offering consistent and predictable returns while delivering benefits to the wider economy.

“A global recovery strategy must be a green strategy,” La Camera added. “Renewables offer a way to align short-term policy action with medium- and long-term energy and climate goals.  Renewables must be the backbone of national efforts to restart economies in the wake of the COVID-19 outbreak. With the right policies in place, falling renewable power costs, can shift markets and contribute greatly towards a green recovery.”

Renewable electricity costs have fallen sharply over the past decade, driven by improving technologies, economies of scale, increasingly competitive supply chains and growing developer experience. Since 2010, utility-scale solar PV power has shown the sharpest cost decline at 82%, followed by concentrating solar power (CSP) at 47%, onshore wind at 39% and offshore wind at 29%.

Costs for solar and wind power technologies also continued to fall year-on-year. Electricity costs from utility-scale solar PV fell 13% in 2019, reaching a global average of 6.8 cents (USD 0.068) per kilowatt-hour (kWh). Onshore and offshore wind both declined about 9%, reaching USD 0.053/kWh and USD 0.115/kWh, respectively. 

Renewables Increasingly Beat Even Cheapest Coal Competitors on Cost

Recent auctions and power purchase agreements (PPAs) show the downward trend continuing for new projects are commissioned in 2020 and beyond. Solar PV prices based on competitive procurement could average USD 0.039/kWh for projects commissioned in 2021, down 42% compared to 2019 and more than one-fifth less than the cheapest fossil-fuel competitor namely coal-fired plants. Record-low auction prices for solar PV in Abu Dhabi and Dubai (UAE), Chile, Ethiopia, Mexico, Peru and Saudi Arabia confirm that values as low as USD 0.03/kWh are already possible.   

For the first time, IRENA’s annual report also looks at investment value in relation to falling generation costs. The same amount of money invested in renewable power today produces more new capacity than it would have a decade ago. In 2019, twice as much renewable power generation capacity was commissioned than in 2010 but required only 18% more investment.

Read the full report Renewable Power Generation Costs in 2019

See the interactive infographic on How Falling Costs Make Renewables a Cost-effective Investment

%d bloggers like this: