Solar and wind energy sites mapped globally for the first time

Solar and wind energy sites mapped globally for the first time

University of Southampton gives us an idea of the current situation through this article on Solar and wind energy sites mapped globally for the first time.

Researchers at the University of Southampton have mapped the global locations of major renewable energy sites, providing a valuable resource to help assess their potential environmental impact.

Solar and wind energy sites mapped globally for the first time
Global distribution of solar (a) and wind (b) farms showing power output and landscape area. Credit: University of Southampton

Their study, published in the Nature journal Scientific Data, shows where solar and wind farms are based around the world—demonstrating both their infrastructure density in different regions and approximate power output. It is the first ever global, open-access dataset of wind and solar power generating sites.

The estimated share of renewable energy in global electricity generation was more than 26 per cent by the end of 2018 and solar panels and wind turbines are by far the biggest drivers of a rapid increase in renewables. Despite this, until now, little has been known about the geographic spread of wind and solar farms and very little accessible data exists.

Lead researcher and Southampton Ph.D. student Sebastian Dunnett explains: “While global land planners are promising more of the planet’s limited space to wind and solar energy, governments are struggling to maintain geospatial information on the rapid expansion of renewables. Most existing studies use land suitability and socioeconomic data to estimate the geographical spread of such technologies, but we hope our study will provide more robust publicly available data.”

Solar and wind energy sites mapped globally for the first time
A wind farm in Caithness, Scotland. Credit: Seb Dunnett

While bringing many environmental benefits, solar and wind energy can also have an adverse effect locally on ecology and wildlife. The researchers hope that by accurately mapping the development of farms they can provide an insight into the footprint of renewable energy on vulnerable ecosystems and help planners assess such effects.

The study authors used data from OpenStreetMap (OSM), an open-access, collaborative global mapping project. They extracted grouped data records tagged ‘solar’ or ‘wind’ and then cross-referenced these with select national datasets in order to get a best estimate of power capacity and create their own maps of solar and wind energy sites. The data show Europe, North America and East Asia’s dominance of the renewable energy sector, and results correlate extremely well with official independent statistics of the renewable energy capacity of countries.

Study supervisor, Professor Felix Eigenbrod of Geography and Environmental Science at the Southampton comments: “This study represents a real milestone in our understanding of where the global green energy revolution is occurring. It should be an invaluable resource for researchers for years to come, as we have designed it so it can be updated with the latest information at any point to allow for changes in what is a quickly expanding industry.”

Explore further

New mapping application visualizes costs of developing renewable energy resources

Integrity of solar and wind-based power generation

Integrity of solar and wind-based power generation

Jarand Rystad, CEO of Rystad Energy, says existing fossil fuel plants will play a major role in the transition towards a near-zero-carbon electricity system, due to intermittency of renewable energy sources in a short but incisive article titled Fossil fuel plants key for integrity of solar and wind-based power generation.

We all know that the world is undergoing an energy transformation, from a system based on fossil fuels to a system based on renewable energy, in order to reduce global greenhouse gas emissions and avoid the most serious impacts of a changing climate.  This article however realistic it appears, could be understood as some sort of justification of the ineluctable surrender of the fossil fuel to its time penalty.

Integrity of solar and wind-based power generation

Jarand Rystad Jan 25, 2020

Existing fossil fuel power plants will play a pivotal role in enabling the full transition to a near-zero-carbon electricity system in many countries. How can such a surprising and perhaps counterintuitive conclusion be reached? The key word is intermittency, in reference to the wide fluctuations of energy supply associated with solar and wind. Even if these two sources are, to some degree, complementary (with more wind at night and during winter, complemented by more sun at daytime and during the summer), the combination still carries a high degree of intermittency.

In this analysis, we have used data from Germany from 2012 to 2019, and scaled this up to a near 100% renewable system – assuming that the total capacity will be 160 GW, or three times the average consumption. In this system, there will still be 28 days where solar and wind combined produce less than 30% of the consumption. This happens typically during high-pressure weather systems during the winter months from November to February. 

Moreover, there will on average be two extreme periods per year, with up to three days in a row when sun and wind will deliver less than 10% of Germany’s total energy consumption. Even with adjustments to imports and consumption levels, the country would still need some 50 GW of power to avoid blackouts (with 72 hours at 50 GW equating to 3.6 TWh). Total water pumping capacity today is 7 GW over four hours or about 30 GWh. Assume this multiplies ten-fold by 2050, and assume that 45 million cars are battery electric vehicles with surplus capacity of 20 kWh each. This would deliver about 1.2 TWh in total, meaning the system would still need 2.4 TWh of power or a continuous load of 33 GW. 

During these periods, restarting old gas-fired power plants could be an economically rational way to deliver the power needed to keep the nation running as usual. The carbon footprint of this would be small – probably less than the footprint associated with constructing gigantic battery facilities for those few extreme cases. Germany presently has 263 gas power plants, with a total capacity of 25 GW. 

Thus, finding a way to maintain these plants for emergency back-up capacity could be an enabler for an energy future based around solar and wind power. Capacity pricing rather than price per kWh is probably one of the commercial changes needed. This is the same pricing model that most people also have for home internet services, and should thus not be too difficult to implement.

%d bloggers like this: