How countries can learn from Jordan’s renewable energy pivot

How countries can learn from Jordan’s renewable energy pivot

By 2021 the country is aiming to have well over half of its power generated by wind or solar energy In the meantime, how countries can learn from Jordan’s renewable energy pivot is elaborated on by Robin Mills, CEO of Qamar Energy and published on The National of June 10, 2019.

How countries can learn from Jordan’s renewable energy pivot
Jordan is using the vast expanse of sunny and windy Wadi Rum to harness its renewable ambitions.

On the road from Wadi Rum to Petra in Jordan, where signs point to the Sheikh Zayed solar complex, wind turbines turn languidly in a steady breeze. At Petra, even Bedouin encampments have solar panels and many homes in Amman use solar tubes to heat water. The UAE made headlines with its world-record solar installations, but in all the Middle East, the impact of the renewable revolution is most visible in the Jordanian landscape.

By last year, the Hashemite kingdom had installed 285 megawatts of wind and 771MW of solar power, a significant chunk of its total generation of about 4 gigawatts. By 2021, it wants to have 2.7GW of renewable capacity. Over the next decade, Jordan’s efforts could really take off – providing half of all electricity output, in our analysis at Qamar Energy. It is only a small market, but it is an important trailblazer for the region’s aspirations in renewables.

Jordan’s success has been built on good resources, solid policy and the imperatives of an energy crisis. Like most Middle East countries, the kingdom has abundant sunny desert land and, similar to Egypt and northern Saudi Arabia, it’s also quite windy in places.

The country started early on encouraging renewables with the Tafila wind farm, a joint venture with Masdar, built in 2015. It offers investors a reasonable return and gives smaller users such as hospitals and universities the chance to build solar panels on vacant land and transmit the power through a grid.

The biggest impetus to alternative energy was the cut-off from Egyptian gas supplies following the 2011 revolution, because of repeated militant attacks on the Sinai pipeline. Jordan’s budget deficit widened because the country, which imports more than 90 per cent of its energy needs and has historically financed its deficits through grants and soft loans, had to burn expensive oil for electricity. Jordan, which already hosted thousands of Iraqi refugees, had to accommodate an increasing power demand due to an influx of 1.3 million Syrians escaping the conflict in their country.

In response, the kingdom opened a liquefied natural gas import terminal at Aqaba, and negotiated supplies from the American company Noble, which produces from offshore Israel. Jordan has large resources of oil shale, effectively an immature form of petroleum source rocks, which can be cooked into oil. A Chinese-led consortium is developing a power plant based on burning this dirty material.

Jordan’s success has been built on good resources, solid policy and the imperatives of an energy crisis.

Efforts to construct a nuclear power plant have been hampered by a lack of cooling water, public opposition and the high costs of financing. Instead, Amman may opt for smaller, modular nuclear reactors that could be fabricated off-site.

To cover the higher costs of fuel, energy subsidies had to be cut back, putting a heavy burden on citizens at a time of sharp economic slowdown. But this had the positive effect of making individual rooftop solar installations attractive for small businesses and householders.

Local Jordanian companies, such as Kawar Energy and Shamsuna Power, along with Dubai-based companies including Yellow Door Energy, have created viable businesses and high-skilled employment. By the early 2020s, Jordan will have the Middle East’s lowest carbon output electricity grid, despite the carbon-heavy oil shale facility.

Success will soon bring its own challenges. Renewable output will exceed total demand at times, while the country still needs to provide for high-consumption and night-time periods. Hydropower, which could be used to store excess renewables, is minimal in the desert country.

The Red-Dead Sea project is intended to bring water to the Dead Sea, which is fast drying up due to climate change and the overuse of the Jordan River. On the way, the water would generate power for desalination. But the expensive venture faces environmental concerns and political hurdles in co-operating with Israel.

Philadelphia Solar, a local company, has announced plans for a solar plant with battery storage. Concentrated solar thermal plants (CSP), like the one under construction in Dubai, can save the Sun’s heat to generate power overnight. These do not seem to be part of Jordan’s plans yet, but the country has excellent conditions for CSP.

Electricity interconnections with Egypt, Saudi Arabia, Iraq and the West Bank are also underway, which could boost the resilience and renewable share of the whole area’s power grid. It could also send power to help rebuild war-torn Syria.

Jordan’s consumers will have to consider the benefits from the country’s renewable expansion, particularly industries which have complained of high electricity prices. Prices are high during peak demand hours, but this scheme will have to become more flexible to lower prices when there is an excess of solar.

Jordan’s small market and head start in renewable energy means it will reach these hurdles to solar deployment probably before any other country in the region. Its success in devising policies to continue attracting capital, boosting its renewable generation, local employment and electricity exports, while reducing consumer bills, will be an important signal for its neighbours.

This is particularly true for countries in the Arabian Gulf – whose utility companies are thinking about how to overcome similar barriers to their bold renewable plans. Such complementary resources and opportunities open the space for co-operation between these two regional allies.

Robin Mills is CEO of Qamar Energy and author of The Myth of the Oil Crisis.

Read More

Advertisements
Solar panels all over the Sahara desert?

Solar panels all over the Sahara desert?

– Imagine newsletter #2

subscribe to the Imagine newsletter

Solar panels all over the Sahara desert? Asked Will de Freitas, Environment + Energy Editor, The Conversation, starting with:

You may have seen a variant of this meme before. A map of North Africa is shown, with a surprisingly small box somewhere in Libya or Algeria shaded in. An area of the Sahara this size, the caption will say, could power the entire world through solar energy:

Over the years various different schemes have been proposed for making this idea a reality. Though a company called Desertec caused a splash with some bold ideas a decade ago, it collapsed in 2014 and none of the other proposals to export serious amounts of electricity from the Sahara to Europe and beyond are anywhere close to being realised.

It’s still hard to store and transport that much electricity from such a remote place, for one thing, while those people who do live in the Sahara may object to their homeland being transformed into a solar superpower. In any case, turning one particular region into a global energy hub risks all sorts of geopolitical problems.

The Imagine newsletter aims to tackle these big “what if” questions, so we asked a number of academics to weigh in on the challenges of exploiting the cheapest form of electricity from perhaps the cheapest and best spot on Earth.


Sahara has huge energy potential

Amin Al-Habaibeh is an engineer at Nottingham Trent University who has researched various options for Saharan solar.


Read more: Should we turn the Sahara Desert into a huge solar farm?


He points to the sheer size and amount of sunshine the Sahara desert receives:

  • It’s larger than Brazil and slightly smaller than the US.
  • If every drop of sunshine that hits the Sahara was converted into energy, the desert would produce enough electricity over any given period to power Europe 7,000 times over.
Solar panels all over the Sahara desert?
Global horizontal irradiation, a measure of how much solar power is received per year. Global Solar Atlas/World Bank

So even a small chunk of the desert could indeed power much of the world, in theory. But how would this be achieved?

Al-Habaibeh points to two main technologies. Both have their pros and cons.

  • Concentrated solar power uses lenses or mirrors to focus the sun’s energy in one spot, which becomes incredibly hot. This heat then generates electricity through a steam turbine.
  • In this image the tower in the middle is the “receiver” which then feeds heat to a generator:
Solar panels all over the Sahara desert?
Aerial view of a large concentrated solar power plant. Novikov Aleksey/Shutterstock
  • Some systems store the heat in the form of molten salt. This means they can release energy overnight, when the sun isn’t shining, providing a 24h supply of electricity.
  • Concentrated solar power is very efficient in hot, dry environments, but the steam generators use lots of water.
  • Then there are regular photovoltaic solar panels. These are much more flexible and easier to set up, but less efficient in the very hottest weather.

Overall, Al-Habaibeh is positive:

Just a small portion of the Sahara could produce as much energy as the entire continent of Africa does at present. As solar technology improves, things will only get cheaper and more efficient. The Sahara may be inhospitable for most plants and animals, but it could bring sustainable energy to life across North Africa – and beyond.


Solar panels could have remarkable impact on the desert though

Installing mass amounts of solar panels in the Sahara could also have a remarkable impact on the desert itself.

The Sahara hasn’t always been dry and sandy. Indeed, archaeologists have found traces of human societies in the middle of the desert, along with prehistoric cave paintings of Savannah animals. Along with climate records, this suggests that just a few thousand years ago the “desert” was far greener than today.

Solar panels all over the Sahara desert?
Long-extinct elephants still remain carved into rocks in southern Algeria. Dmitry Pichugin / shutterstock

Alona Armstrong, an environmental science lecturer at Lancaster University, wrote about a fascinating study in 2018 that suggested massive renewable energy farms could make the Sahara green again.


Read more: Massive solar and wind farms could bring vegetation back to the Sahara


A team of scientists imagined building truly vast solar and wind farms, far larger than most countries, and simulated the impact they would have on the desert around them. They found that:

  • Solar panels reflect less heat back into space compared to sand.
  • This means the surface would warm, causing air to rise and form clouds.
  • This would mean more rainfall, especially in the Sahel region at the southern edge of the desert.
  • And more vegetation would grow, which would absorb more heat, drive more precipitation, and so on
  • It’s an example of a climate feedback.
Solar panels all over the Sahara desert?
Large-scale wind and solar would mean more new rain in some areas than others. Eviatar Bach, CC BY-SA

This may be a nice side effect of a huge Saharan solar plant, but it doesn’t necessarily mean it should happen. As Armstrong points out:

These areas may be sparsely populated but people do live there, their livelihoods are there, and the landscapes are of cultural value to them. Can the land really be “grabbed” to supply energy to Europe and the Middle East?


Solar panels all over the Sahara desert?
Ghardaia, Algeria. Even in the middle of the Sahara, there are settlements. Sergey-73/Shutterstock

Is this climate colonialism?

If we want to deploy millions of solar panels in the Sahara, then who is “we”? Who pays for it, who runs it and, crucially, who gets the cheap electricity?

This is what worries Olúfẹ́mi Táíwò, a philosopher who researches climate justice at Georgetown University. He mentions Saharan solar power as one of the possible policies involved in a Green New Deal, a wide-ranging plan to enact a “green transition” over the next decade.


Read more: How a Green New Deal could exploit developing countries


He points out that exports of solar power could: “Exacerbate what scholars like sociologist Doreen Martinez call climate colonialism – the domination of less powerful countries and peoples through initiatives meant to slow the pace of global warming.”

  • While Africa may have abundant energy resources, the continent is also home to the people who are the least connected to the grid.
  • Solar exports risk “bolstering European energy security … while millions of sub-Saharan Africans have no energy of their own.”

What if we’re looking at the wrong desert?

All of this will be moot if Saharan solar never actually happens. And Denes Csala, a lecturer in energy systems at Lancaster University, is sceptical.


Read more: Why the new ‘solar superpowers’ will probably be petro-states in the Gulf


It’s true that much of the world’s best solar resources are found in the desert. Here’s a graph from his PhD research which shows how Saharan nations dominate:

Solar panels all over the Sahara desert?
The sunniest tenth of the world is mostly Saharan countries … and Saudi Arabia. Denes Csala / NREL, Author provided

But Denes says that we’re looking at the wrong desert. In fact, the countries of the Arabian peninsula are better placed to exploit the sun. He argues several factors work in favour of Saudi Arabia, the UAE and co:

  • They have a history of exporting oil.
  • In the energy market, worries over security of supply means countries tend to do business with the same partners over time.
  • Ports, pipes and other infrastructure that have been built to ship oil and gas could be repurposed to ship solar energy as hydrogen.

[Energy security] would be the Achilles heel of a northern African energy project: the connections to Europe would likely be the continent’s single most important critical infrastructure and, considering the stability of the region, it is unlikely that European countries would take on such a risk.

It would be fair to say academics have mixed views about the idea of mass Saharan solar. While the energy potential is obvious, and most of the necessary technology already exists, in the long run it may prove too complicated politically.


Still think this is all fantasy?

Maybe Europeans should look closer to home. The UK Planning Inspectorate is currently examining the Cleve Hill solar farm proposal in Kent, which would involve installing nearly a million solar panels across a marshland site the size of 600 football pitches. To protect against flooding, the panels would be mounted several metres in the air. If built, despite opposition from locals and conservationists, Cleve Hill would be by far the country’s largest solar farm and about the same size as Europe’s largest, near Bordeaux.

Alastair Buckley from the University of Sheffield points out the project would be groundbreaking as, unlike other ventures of this kind, it doesn’t rely on subsidies. With solar power getting ever cheaper, Cleve Hill – if it happens – seems to mark the moment when solar may start paying for itself – even far from the world’s deserts.

Further reading


What is Imagine?

Subscribe to the newsletter Imagine.

Imagine is a newsletter from The Conversation that presents a vision of a world acting on climate change. Drawing on the collective wisdom of academics in fields from anthropology and zoology to technology and psychology, it investigates the many ways life on Earth could be made fairer and more fulfilling by taking radical action on climate change. You are currently reading the web version of the newsletter.

Here’s the more elegant email-optimised version subscribers receive. To get Imagine delivered straight to your inbox, subscribe now.

Click here to subscribe to Imagine. Climate change is inevitable. Our response to it isn’t.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Egypt’s giant solar park operational in 2019

Egypt’s giant solar park operational in 2019

Reuters Sustainable Business May 5, 2019, reported that Egypt expects giant solar park to be fully operational in 2019. This piece of news went viral throughout the MENA region. Would Egypt’s giant solar park operational in 2019 be a new trend?

Image result for Egypt's giant solar park operational in 2019
Boats sail in the Nile river in Aswan on the road to the touristic Nubia, south of Egypt, October 1, 2015. REUTERS/Mohamed Abd El Ghany.

CAIRO (Reuters) – Egypt expects the 1.6-gigawatt solar park it is building in the south of the country to be operating at full capacity in 2019, the investment ministry said in a statement on Sunday.

The $2 billion project, set to be the world’s largest solar installation, has been partly funded by the World Bank, which invested $653 million through the International Finance Corporation.

Some parts of the park are already operating on a small scale, while other areas are still undergoing testing.

Egypt aims to meet 20 per cent of its energy needs from renewable sources by 2022 and up to 40 per cent by 2035. Renewable energy currently covers only about 3 per cent of the country’s needs.

“Egypt’s energy sector reforms have opened a wider door for private sector investments,” World Bank President David Malpass said during his visit to the site alongside Egypt’s Investment Minister Sahar Nasr.

Image result for Egypt’s Investment Minister Sahar Nasr
Egypt’s Investment Minister Sahar Nasr

Egypt is on a drive to lure back investors who fled following the 2011 uprising with a slew of economic reforms and incentives the government hopes will draw fresh capital and kickstart growth.

Most of the foreign direct investment Egypt attracts goes toward its energy sector.

Reporting by Ehab Farouk; Writing by Nadine Awadalla; Editing by Yousef Saba and Jan Harvey.

Further reading on this project can be found here; it is the World’s Largest Solar Park Project. Alcazar Energy’s 64 MW Solar PV plant (Picture above) is the first of thirty projects in the Benban Solar Park to complete construction and enter commercial operation. Benban will be the largest solar power installation in the world with up to 1.5 GW capacity located in Aswan, Egypt.

Why the new ‘solar superpowers’ will probably be petro-states in the Gulf

Why the new ‘solar superpowers’ will probably be petro-states in the Gulf

Why the new ‘solar superpowers’ will probably be petro-states in the Gulf and not those countries of North Africa? Why indeed; here is Dénes Csala, Lancaster University‘s opinion.

File 20190430 136794 45bqac.jpg?ixlib=rb 1.1

capitanoproductions / Shutterstock

Every now and then, the idea of powering Europe using the vast solar resources of the Sahara Desert comes up. Were this to actually happen, we may witness the rise of new energy superpowers in Northern Africa. But a look at the economic and political energy system suggests what’s more likely is the oil-rich countries of the Arabian (or Persian) Gulf will continue to dominate energy trade even in the post-fossil era.

Renewable energy, of course, is very location dependent – the sunnier a place is, the more energy you get out of photovoltaic panels. Over the course of a year, southern Algeria, for example, gets more than twice as much solar energy as southern England. The graph below, which I put together as part of my PhD, shows that some of the best solar resources in the world are indeed found in Algeria, Libya, Egypt, Niger, Chad and Sudan.

Russia and Canada have lots of low-solar land, but the most sunny areas are elsewhere. Denes Csala / NREL, Author provided


So, one could build large Saharan solar farms and then transmit the power back to densely populated areas of Europe. Such a project would need to overcome various technical challenges, but we can say that in theory it is possible, even if not practical.

Yet plans to actually set up mass Saharan solar have floundered. The most notable project, Desertec, was fairly active until the mid 2010s, when a collapse in the price of oil and natural gas made its business case more difficult. At that time, the major technology considered was concentrated solar power, where you use the heat from the sun to run a steam turbine. Energy can be stored as heat overnight, therefore enabling uninterrupted energy supply and making it preferred to then expensive batteries.

Solar is getting cheaper and cheaper. Nature


Since then, however, the cost of both solar panels and battery storage have dropped drastically. But, while conditions might look favourable for Saharan solar, it is unlikely that new solar energy kingpins will arise in North Africa. Instead, we should look one desert further to the East – the Rub al Khali on the Arabian peninsula, the home of the reigning energy powers.

Sun shines on the Gulf

The economies of the United Arab Emirates, Saudi Arabia, Qatar and the other Gulf nations are built around energy exports. And as climate change imposes pressure on the extraction of fossil fuels, these countries will have to look for alternative energy (and income) sources in order to keep their economies afloat. The International Renewable Energy Agency set up its headquarters in Abu Dhabi, and the region has no shortage of ambitious solar projects promising extremely cheap electricity. However only a small amount of capacity has actually been deployed so far. Low oil revenues have not helped with the megaprojects.

 

Countries in the Sahara also have little history of trading fossil fuels, outside of Libya and Algeria, while things are rather different for the petro-states of the Gulf. And this matters because, in the energy business, worries over longer-term security of supply mean countries tend to trade with the same partners.

This would be the Achilles’ heel of a Northern African energy project: the connections to Europe would likely be the continent’s single most important critical infrastructure and, considering the stability of the region, it is unlikely that European countries would take on such a risk.

Which brings us to an alternative way to transmit energy: hydrogen. A process called electrolysis can use renewable electricity to split water into hydrogen and oxygen, and the resulting hydrogen can store lots of energy. Soon it will become feasible to move energy around the world in this form, using shipping infrastructure similar to that already in use today for liquefied natural gas.

Sure, there are disadvantages compared to batteries. It would mean introducing two more conversion stages and thus reduced efficiency (30% roundtrip efficiency compared to 80% for batteries), but it would overcome the distance barrier. And perhaps just as importantly: shipping energy by hydrogen would mean no significant change to the existing maritime trade infrastructure, which will hand an advantage to established energy exporters.

If this means the Sahara is unlikely to develop renewable energy superpowers, then perhaps this is for the better. With the booming populations of Sub-Saharan Africa in dire need of electrification, clean solar power might be better used to alleviate the energy crisis in somewhere like Nigeria rather than sent to Europe. While these countries may eventually be able to shake off any solar resource curse, in the short term, exports like these could just look like yet another European attempt to extract natural resources from Africans.


Click here to subscribe to our climate action newsletter. Climate change is inevitable. Our response to it isn’t.The Conversation

Dénes Csala, Lecturer in Energy Storage Systems Dynamics, Lancaster University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Should we turn the Sahara Desert into a huge solar farm?

Should we turn the Sahara Desert into a huge solar farm?

Amin Al-Habaibeh, Nottingham Trent University

Whenever I visit the Sahara I am struck by how sunny and hot it is and how clear the sky can be. Aside from a few oases there is little vegetation, and most of the world’s largest desert is covered with rocks, sand and sand dunes. The Saharan sun is powerful enough to provide Earth with significant solar energy.

The statistics are mind-boggling. If the desert were a country, it would be fifth biggest in the world – it’s larger than Brazil and slightly smaller than China and the US. Each square metre receives, on average, between 2,000 and 3,000 kilowatt hours of solar energy per year, according to NASA estimates. Given the Sahara covers about 9m km², that means the total energy available – that is, if every inch of the desert soaked up every drop of the sun’s energy – is more than 22 billion gigawatt hours (GWh) a year.

This is again a big number that requires some context: it means that a hypothetical solar farm that covered the entire desert would produce 2,000 times more energy than even the largest power stations in the world, which generate barely 100,000 GWh a year. In fact, its output would be equivalent to more than 36 billion barrels of oil per day – that’s around five barrels per person per day. In this scenario, the Sahara could potentially produce more than seven times the electricity requirements of Europe, with almost no carbon emissions.

Global horizontal irradiation, a measure of how much solar power received per year.
Global Solar Atlas / World Bank

What’s more, the Sahara also has the advantage of being very close to Europe. The shortest distance between North Africa and Europe is just 15km at the Strait of Gibraltar. But even much further distances, across the main width of the Mediterranean, are perfectly practical – after all, the world’s longest underwater power cable runs for nearly 600km between Norway and the Netherlands.

Over the past decade or so, scientists (including me and my colleagues) have looked at how desert solar could meet increasing local energy demand and eventually power Europe too – and how this might work in practice. And these academic insights have been translated in serious plans. The highest profile attempt was Desertec, a project announced in 2009 that quickly acquired lots of funding from various banks and energy firms before largely collapsing when most investors pulled out five years later, citing high costs. Such projects are held back by a variety of political, commercial and social factors, including a lack of rapid development in the region.

The planet Tatooine from the Star Wars movies was filmed in southern Tunisia.
Amin Al-Habaibeh, Author provided

More recent proposals include the TuNur project in Tunisia, which aims to power more than 2m European homes, or the Noor Complex Solar Power Plant in Morocco which also aims to export energy to Europe.

Two technologies

There are two practical technologies at the moment to generate solar electricity within this context: concentrated solar power (CSP) and regular photovoltaic solar panels. Each has its pros and cons.

Concentrated solar power uses lenses or mirrors to focus the sun’s energy in one spot, which becomes incredibly hot. This heat then generates electricity through conventional steam turbines. Some systems use molten salt to store energy, allowing electricity to also be produced at night.

A concentrated solar plant near Seville, Spain. The mirrors focus the sun’s energy on the tower in the centre.
Novikov Aleksey / shutterstock

CSP seems to be more suitable to the Sahara due to the direct sun, lack of clouds and high temperatures which makes it more efficient. However the lenses and mirrors could be covered by sand storms, while the turbine and steam heating systems remain complex technologies. But the most important drawback of the technology is its use of scarce water resources.

Photovoltaic solar panels instead convert the sun’s energy to electricity directly using semiconductors. It is the most common type of solar power as it can be either connected to the grid or distributed for small-scale use on individual buildings. Also, it provides reasonable output in cloudy weather.

But one of the drawbacks is that when the panels get too hot their efficiency drops. This isn’t ideal in a part of the world where summer temperatures can easily exceed 45℃ in the shade, and given that demand for energy for air conditioning is strongest during the hottest parts of the day. Another problem is that sand storms could cover the panels, further reducing their efficiency.

Both technologies might need some amount of water to clean the mirrors and panels depending on the weather, which also makes water an important factor to consider. Most researchers suggest integrating the two main technologies to develop a hybrid system.

Just a small portion of the Sahara could produce as much energy as the entire continent of Africa does at present. As solar technology improves, things will only get cheaper and more efficient. The Sahara may be inhospitable for most plants and animals, but it could bring sustainable energy to life across North Africa – and beyond.


Click here to subscribe to our climate action newsletter. Climate change is inevitable. Our response to it isn’t.The Conversation

Amin Al-Habaibeh, Professor of Intelligent Engineering Systems, Nottingham Trent University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Renewables will dominate world’s energy needs, says global body

Renewables will dominate world’s energy needs, says global body

By Joshua S Hill, on 11 April 2019

Renewable energy could become the dominant source of energy across the world, provide up to 86% of global power demand under a scenario in which deeper electrification means that electricity’s share of final energy consumption jumps from its current levels of 20% to 50% by 2050.

A new report published by the International Renewable Energy Agency (IRENA), this week at the Berlin Energy Transition Dialogue and entitled Global Energy Transformation: A Roadmap to 2050, charts a pathway to accelerating the transformation of the global energy mix to  meet climate objectives, create jobs and foster economic growth.

IRENA says stepping away from reliance on fossil fuels like coal, oil, and gas is key to this transformation, and electrification delivers the best pathway. This includes the move to more electric vehicles and to using electricity for heating and cooling, which can be supplied by wind and solar.

IRENA says that under this scenario, energy-related CO2 emissions would decline 70% below today’s levels – of which, 75% can be achieved through renewable energy and electrification technologies.

Renewable energy sources would provide the bulk of global power demand, under such a scenario, with as much as 86% of demand, driven by as many as 1 billion electric vehicles and electrified heating & cooling, as well as the emergence of renewable hydrogen.

Under such a plan, then, renewable energy could supply two-thirds of final energy consumption.

“The race to secure a climate safe future has entered a decisive phase,” said newly-installed IRENA Director-General Francesco La Camera. “Renewable energy is the most effective and readily-available solution for reversing the trend of rising CO2 emissions. A combination of renewable energy with a deeper electrification can achieve 75 per cent of the energy-related emissions reduction needed.”

The pathway laid out by IRENA would also have significant economic benefits, saving the global economy between $65 trillion and $160 trillion – or, put another way, between $3 and $7 per each $1 spent on the energy transition – helping the economy to grow by 2.5% in 2050.

“The shift towards renewables makes economic sense,” La Camera continued. “By mid-century, the global economy would be larger, and jobs created in the energy sector would boost global employment by 0.2 per cent.

“Policies to promote a just, fair and inclusive transition could maximise the benefits for different countries, regions and communities. This would also accelerate the achievement of affordable and universal energy access. The global energy transformation goes beyond a transformation of the energy sector. It is a transformation of our economies and societies.”

Unfortunately, at the same time as it lays out a pathway forward, the IRENA report also warns that current action is lagging well behind what is necessary.

The authors write that, “Despite clear evidence of human-caused climate change, support for the Paris Agreement on climate change, and the prevalence of clean, economical and sustainable energy options, energy-related carbon dioxide (CO2) emissions have increased 1.3% annually, on average, over the last five years.”

Their conclusion? “The gap between observed emissions and the reductions that are needed to meet internationally agreed climate objectives is widening.”

“The energy transformation is gaining momentum, but it must accelerate even faster,” concluded La Camera. “The UN’s 2030 Sustainable Development Agenda and the review of national climate pledges under the Paris Agreement are milestones for raising the level of ambition.

“Urgent action on the ground at all levels is vital, in particular unlocking the investments needed to further strengthen the momentum of this energy transformation. Speed and forward-looking leadership will be critical – the world in 2050 depends on the energy decisions we take today.”

The authors of the report urge national policymakers to focus on zero-carbon long-term strategies as well as boosting and harnessing systemic innovation such as fostering smarter energy systems through digitalisation and coupling end-use sectors – particularly the transport and heating & cooling sectors – with greater electrification.

The report also found that, while additional investments needed is $15 trillion by 2050, this is nevertheless 40% down compared to IRENA’s previous analysis “due in large part to rapidly falling renewable energy costs as well as opportunities to electrify transport and other end uses.”

Source: renewables.seenews.com