Advertisements
A globalised solar-powered future is wholly unrealistic

A globalised solar-powered future is wholly unrealistic

A globalised solar-powered future is wholly unrealistic – and our economy is the reason why is elaborated on by Alf Hornborg, Professor of Human Ecology at Lund University.

Over the past two centuries, millions of dedicated people – revolutionaries, activists, politicians, and theorists – have been unable to curb the disastrous and increasingly globalised trajectory of economic polarisation and ecological degradation. This is perhaps because we are utterly trapped in flawed ways of thinking about technology and economy – as the current discourse on climate change shows.

Rising greenhouse gas emissions are not just generating climate change. They are giving more and more of us climate anxiety. Doomsday scenarios are capturing the headlines at an accelerating rate. Scientists from all over the world tell us that emissions in ten years must be half of what they were ten years ago, or we face apocalypse. Schoolchildren like Greta Thunberg and activist movements like Extinction Rebellion are demanding that we panic. And rightly so. But what should we do to avoid disaster?

Most scientists, politicians, and business leaders tend to put their hope in technological progress. Regardless of ideology, there is a widespread expectation that new technologies will replace fossil fuels by harnessing renewable energy such as solar and wind. Many also trust that there will be technologies for removing carbon dioxide from the atmosphere and for “geoengineering” the Earth’s climate. The common denominator in these visions is the faith that we can save modern civilisation if we shift to new technologies. But “technology” is not a magic wand. It requires a lot of money, which means claims on labour and resources from other areas. We tend to forget this crucial fact.


Read more: Should we engineer the climate? A social scientist and natural scientist discuss


I would argue that the way we take conventional “all-purpose” money for granted is the main reason why we have not understood how advanced technologies are dependent on the appropriation of labour and resources from elsewhere. In making it possible to exchange almost anything – human time, gadgets, ecosystems, whatever – for anything else on the market, people are constantly looking for the best deals, which ultimately means promoting the lowest wages and the cheapest resources in the global South.

It is the logic of money that has created the utterly unsustainable and growth-hungry global society that exists today. To get our globalised economy to respect natural limits, we must set limits to what can be exchanged. Unfortunately, it seems increasingly probable that we shall have to experience something closer to disaster – such as a semi-global harvest failure – before we are prepared to seriously question how money and markets are currently designed.


This article is part of Conversation Insights
The Insights team generates long-form journalism derived from interdisciplinary research. The team is working with academics from different backgrounds who have been engaged in projects aimed at tackling societal and scientific challenges.


Green growth?

Take the ultimate issue we are facing: whether our modern, global, and growing economy can be powered by renewable energy. Among most champions of sustainability, such as advocates of a Green New Deal, there is an unshakeable conviction that the problem of climate change can be solved by engineers.

What generally divides ideological positions is not the faith in technology as such, but which technical solutions to choose, and whether they will require major political change. Those who remain sceptical to the promises of technology – such as advocates of radical downshifting or degrowth – tend to be marginalised from politics and the media. So far, any politician who seriously advocates degrowth is not likely to have a future in politics.

Mainstream optimism about technology is often referred to as ecomodernism. The Ecomodernist Manifesto, a concise statement of this approach published in 2015, asks us to embrace technological progress, which will give us “a good, or even great, Anthropocene”. It argues that the progress of technology has “decoupled” us from the natural world and should be allowed to continue to do so in order to allow the “rewilding” of nature. The growth of cities, industrial agriculture, and nuclear power, it claims, illustrate such decoupling. As if these phenomena did not have ecological footprints beyond their own boundaries.


Read more: An ecomodernist’s manifesto: save wildlife by embracing new tech


Meanwhile, calls for a Green New Deal have been voiced for more than a decade, but in February 2019 it took the form of a resolution to the American House of Representatives. Central to its vision is a large-scale shift to renewable energy sources and massive investments in new infrastructure. This would enable further growth of the economy, it is argued.

A globalised solar-powered future is wholly unrealistic
What will it take for us to seriously consider the roots of our problems? PicsEKa/Shutterstock

Rethinking technology

So the general consensus seems to be that the problem of climate change is just a question of replacing one energy technology with another. But a historical view reveals that the very idea of technology is inextricably intertwined with capital accumulation, unequal exchange and the idea of all-purpose money. And as such, it is not as easy to redesign as we like to think. Shifting the main energy technology is not just a matter of replacing infrastructure – it means transforming the economic world order.

In the 19th century, the industrial revolution gave us the notion that technological progress is simply human ingenuity applied to nature, and that it has nothing to do with the structure of world society. This is the mirror image of the economists’ illusion, that growth has nothing to do with nature and so does not need to reckon with natural limits. Rather than seeing that both technology and economy span the nature-society divide, engineering is thought of as dealing only with nature and economics as dealing only with society.

The steam engine, for instance, is simply considered an ingenious invention for harnessing the chemical energy of coal. I am not denying that this is the case, but steam technology in early industrial Britain was also contingent on capital accumulated on global markets. The steam-driven factories in Manchester would never have been built without the triangular Atlantic trade in slaves, raw cotton, and cotton textiles. Steam technology was not just a matter of ingenious engineering applied to nature – like all complex technology, it was also crucially dependent on global relations of exchange.

Sketch showing a steam engine designed by Boulton & Watt, England, 1784. Wikimedia Commons

This dependence of technology on global social relations is not just a matter of money. In quite a physical sense, the viability of the steam engine relied on the flows of human labour energy and other resources that had been invested in cotton fibre from South Carolina, in the US, coal from Wales and iron from Sweden. Modern technology, then, is a product of the metabolism of world society, not simply the result of uncovering “facts” of nature.

The illusion that we have suffered from since the industrial revolution is that technological change is simply a matter of engineering knowledge, regardless of the patterns of global material flows. This is particularly problematic in that it makes us blind to how such flows tend to be highly uneven.

This is not just true of the days of the British Empire. To this day, technologically advanced areas of the world are net importers of the resources that have been used as inputs in producing their technologies and other commodities, such as land, labour, materials, and energy. Technological progress and capital accumulation are two sides of the same coin. But the material asymmetries in world trade are invisible to mainstream economists, who focus exclusively on flows of money.


Read more: Decolonise science – time to end another imperial era


Ironically, this understanding of technology is not even recognised in Marxist theory, although it claims to be both materialist and committed to social justice. Marxist theory and politics tend toward what opponents refer to as a Promethean faith in technological progress. Its concern with justice focuses on the emancipation of the industrial worker, rather than on the global flows of resources that are embodied in the industrial machine.

This Marxist faith in the magic of technology occasionally takes extreme forms, as in the case of the biologist David Schwartzman, who does not hesitate to predict future human colonisation of the galaxy and Aaron Bastani, who anticipates mining asteroids. In his remarkable book Fully Automated Luxury Communism: A Manifesto, Bastani repeats a widespread claim about the cheapness of solar power that shows how deluded most of us are by the idea of technology.

Nature, he writes, “provides us with virtually free, limitless energy”. This was a frequently voiced conviction already in 1964, when the chemist Farrington Daniels proclaimed that the “most plentiful and cheapest energy is ours for the taking”. More than 50 years later, the dream persists.

The realities

Electricity globally represents about 19% of total energy use – the other major energy drains being transports and industry. In 2017, only 0.7% of global energy use derived from solar power and 1.9% from wind, while 85% relied on fossil fuels. As much as 90% of world energy use derives from fossil sources, and this share is actually increasing. So why is the long-anticipated transition to renewable energy not materialising?

One highly contested issue is the land requirements for harnessing renewable energy. Energy experts like David MacKay and Vaclav Smil have estimated that the “power density” – the watts of energy that can be harnessed per unit of land area – of renewable energy sources is so much lower than that of fossil fuels that to replace fossil with renewable energy would require vastly greater land areas for capturing energy.

In part because of this issue, visions of large-scale solar power projects have long referred to the good use to which they could put unproductive areas like the Sahara desert. But doubts about profitability have discouraged investments. A decade ago, for example, there was much talk about Desertec, a €400 billion project that crumbled as the major investors pulled out, one by one.

Today the world’s largest solar energy project is Ouarzazate Solar Power Station in Morocco. It covers about 25 square kilometres and has cost around US$9 billion to build. It is designed to provide around a million people with electricity, which means that another 35 such projects – that is, US$315 billion of investments – would be required merely to cater to the population of Morocco. We tend not to see that the enormous investments of capital needed for such massive infrastructural projects represent claims on resources elsewhere – they have huge footprints beyond our field of vision.

Also, we must consider whether solar is really carbon free. As Smil has shown for wind turbines and Storm van Leeuwen for nuclear power, the production, installation, and maintenance of any technological infrastructure remains critically dependent on fossil energy. Of course, it is easy to retort that until the transition has been made, solar panels are going to have to be produced by burning fossil fuels. But even if 100% of our electricity were renewable, it would not be able to propel global transports or cover the production of steel and cement for urban-industrial infrastructure.

And given the fact that the cheapening of solar panels in recent years to a significant extent is the result of shifting manufacture to Asia, we must ask ourselves whether European and American efforts to become sustainable should really be based on the global exploitation of low-wage labour, scarce resources and abused landscapes elsewhere.


Read more: Lithium is finite – but clean technology relies on such non-renewable resources


Collecting carbon

Solar power is not displacing fossil energy, only adding to it. And the pace of expansion of renewable energy capacity has stalled – it was about the same in 2018 as in 2017. Meanwhile, our global combustion of fossil fuels continues to rise, as do our carbon emissions. Because this trend seems unstoppable, many hope to see extensive use of technologies for capturing and removing the carbon from the emissions of power plants and factories.

Carbon Capture and Storage (CCS) remains an essential component of the 2016 Paris Agreement on climate change. But to envisage such technologies as economically accessible at a global scale is clearly unrealistic.

To collect the atoms of carbon dispersed by the global combustion of fossil fuels would be as energy-demanding and economically unfeasible as it would be to try to collect the molecules of rubber from car tires that are continuously being dispersed in the atmosphere by road friction.

The late economist Nicholas Georgescu-Roegen used this example to show that economic processes inevitably lead to entropy – that is, an increase in physical disorder and loss of productive potential. In not grasping the implications of this fact, we continue to imagine some miraculous new technology that will reverse the Law of Entropy.

Economic “value” is a cultural idea. An implication of the Law of Entropy is that productive potential in nature – the force of energy or the quality of materials – is systematically lost as value is being produced. This perspective turns our economic worldview upside down. Value is measured in money, and money shapes the way we think about value. Economists are right in that value should be defined in terms of human preferences, rather than inputs of labour or resources, but the result is that the more value we produce, the more inexpensive labour, energy and other resources are required. To curb the relentless growth of value – at the expense of the biosphere and the global poor – we must create an economy that can restrain itself.

The evils of capitalism

Much of the discussion on climate change suggests that we are on a battlefield, confronting evil people who want to obstruct our path to an ecological civilisation. But the concept of capitalism tends to mystify how we are all caught in a game defined by the logic of our own constructions – as if there was an abstract “system” and its morally despicable proponents to blame. Rather than see the very design of the money game as the real antagonist, our call to arms tends to be directed at the players who have had best luck with the dice.

I would instead argue that the ultimate obstruction is not a question of human morality but of our common faith in what Marx called “money fetishism”. We collectively delegate responsibility for our future to a mindless human invention – what Karl Polanyi called all-purpose money, the peculiar idea that anything can be exchanged for anything else. The aggregate logic of this relatively recent idea is precisely what is usually called “capitalism”. It defines the strategies of corporations, politicians, and citizens alike.

All want their money assets to grow. The logic of the global money game obviously does not provide enough incentives to invest in renewables. It generates greed, obscene and rising inequalities, violence, and environmental degradation, including climate change. But mainstream economics appears to have more faith in setting this logic free than ever. Given the way the economy is now organised, it does not see an alternative to obeying the logic of the globalised market.

It’s the rules which are the issue – not those who win. Theera Disayarat/Shutterstock.com

The only way to change the game is to redesign its most basic rules. To attribute climate change to an abstract system called capitalism – but without challenging the idea of all-purpose money – is to deny our own agency. The “system” is perpetuated every time we buy our groceries, regardless of whether we are radical activists or climate change deniers. It is difficult to identify culprits if we are all players in the same game. In agreeing to the rules, we have limited our potential collective agency. We have become the tools and servants of our own creation – all-purpose money.

Despite good intentions, it is not clear what Thunberg, Extinction Rebellion and the rest of the climate movement are demanding should be done. Like most of us, they want to stop the emissions of greenhouse gases, but seem to believe that such an energy transition is compatible with money, globalised markets, and modern civilisation.

Is our goal to overthrow “the capitalist mode of production”? If so, how do we go about doing that? Should we blame the politicians for not confronting capitalism and the inertia of all-purpose money? Or – which should follow automatically – should we blame the voters? Should we blame ourselves for not electing politicians that are sincere enough to advocate reducing our mobility and levels of consumption?

Many believe that with the right technologies we would not have to reduce our mobility or energy consumption – and that the global economy could still grow. But to me, that is an illusion. It suggests that we have not yet grasped what “technology” is. Electric cars and many other “green” devices may seem reassuring but are often revealed to be insidious strategies for displacing work and environmental loads beyond our horizon – to unhealthy, low-wage labour in mines in Congo and Inner Mongolia. They look sustainable and fair to their affluent users but perpetuate a myopic worldview that goes back to the invention of the steam engine. I have called this delusion machine fetishism.

A globalised solar-powered future is wholly unrealistic
Not the guilt free option many assume them to be. Smile Fight/Shutterstock.com

Redesigning the global money game

So the first thing we should redesign are the economic ideas that brought fossil-fueled technology into existence and continue to perpetuate it. “Capitalism” ultimately refers to the artefact or idea of all-purpose money, which most of us take for granted as being something about which we do not have a choice. But we do, and this must be recognised.

Since the 19th century, all-purpose money has obscured the unequal resource flows of colonialism by making them seem reciprocal: money has served as a veil that mystifies exploitation by representing it as fair exchange. Economists today reproduce this 19th-century mystification, using a vocabulary that has proven useless in challenging global problems of justice and sustainability. The policies designed to protect the environment and promote global justice have not curbed the insidious logic of all-purpose money – which is to increase environmental degradation as well as economic inequalities.

In order to see that all-purpose money is indeed the fundamental problem, we need to see that there are alternative ways of designing money and markets. Like the rules in a board game, they are human constructions and can, in principle, be redesigned. In order to accomplish economic “degrowth” and curb the treadmill of capital accumulation, we must transform the systemic logic of money itself.

National authorities might establish a complementary currency, alongside regular money, that is distributed as a universal basic income but that can only be used to buy goods and services that are produced within a given radius from the point of purchase. This is not “local money” in the sense of LETS or the Bristol Pound – which in effect do nothing to impede the expansion of the global market – but a genuine spanner in the wheel of globalisation. With local money you can buy goods produced on the other side of the planet, as long as you buy it in a local store. What I am suggesting is special money that can only be used to buy goods produced locally.

A globalised solar-powered future is wholly unrealistic
Locally produced goods. Alison Hancock/Shutterstock.com

This would help decrease demand for global transports – a major source of greenhouse gas emissions – while increasing local diversity and resilience and encouraging community integration. It would no longer make low wages and lax environmental legislation competitive advantages in world trade, as is currently the case.

Immunising local communities and ecosystems from the logic of globalised capital flows may be the only feasible way of creating a truly “post-capitalist” society that respects planetary boundaries and does not generate deepening global injustices.

Re-localising the bulk of the economy in this way does not mean that communities won’t need electricity, for example, to run hospitals, computers and households. But it would dismantle most of the global, fossil-fuelled infrastructure for transporting people, groceries and other commodities around the planet.

This means decoupling human subsistence from fossil energy and re-embedding humans in their landscapes and communities. In completely changing market structures of demand, such a shift would not require anyone – corporations, politicians, or citizens – to choose between fossil and solar energy, as two comparable options with different profit margins.

To return to the example of Morocco, solar power will obviously have an important role to play in generating indispensable electricity, but to imagine that it will be able to provide anything near current levels of per capita energy use in the global North is wholly unrealistic. A transition to solar energy should not simply be about replacing fossil fuels, but about reorganising the global economy.

Solar power will no doubt be a vital component of humanity’s future, but not as long as we allow the logic of the world market to make it profitable to transport essential goods halfway around the world. The current blind faith in technology will not save us. For the planet to stand any chance, the global economy must be redesigned. The problem is more fundamental than capitalism or the emphasis on growth: it is money itself, and how money is related to technology.

Climate change and the other horrors of the Anthropocene don’t just tell us to stop using fossil fuels – they tell us that globalisation itself is unsustainable.


Click here to subscribe to our climate action newsletter. Climate change is inevitable. Our response to it isn’t.

This article is republished from The Conversation under a Creative Commons license.

Read the original article.

The Conversation

Advertisements
Unsteady progress of a potential MENA solar superpower

Unsteady progress of a potential MENA solar superpower

PV MAGAZINE dated August 17, 2019, proposed for The weekend read, this Unsteady progress of a potential MENA solar superpower article by Author
LeAnne Graves
is from pv magazine, July edition.

With a combination of scale, a growing population, outstanding irradiation, and available capital, solar PV should be a ‘no brainer’ for the Kingdom of Saudi Arabia. But early explorations of the technology have soured expectations, and progress has come in fits and starts.

Saudi Arabia’s Crown Prince and de facto ruler of the kingdom, Mohammed bin Salman. The ‘Vision 2030’ agenda launched in 2016 includes plans to have 9.5 GW of solar and wind power feeding electricity into the national grid by 2023.
Image: U.S. State Department

Saudi Arabia’s renewable energy sector over the years can be best described as a roller coaster. Just when momentum seemed to be building, the ride came to a halt. Then it began to move, but never really gave potential investors the confidence needed for serious acceleration. Progress started to take shape in 2016 and has continued, showing that this time is different.

Yet, to understand how the country got to where it is today, it’s important to know where Saudi Arabia has been, and that stems all the way back to 1977.

Memory lane

Much like the creation of the national oil company Saudi Aramco — formed between the United States and Saudi Arabia — solar power has been explored as part of a bilateral partnership between the two countries. Saudi Arabia’s National Center for Science and Technology (now known as the King Abdulaziz City for Science and Technology or KACST) and the United States Department of Energy (DOE) struck a deal four decades ago for the Saudi Solar Village Project. The five-year agreement included $50 million from both countries and was extended for three more years. What resulted was a 350 kW solar PV system located 50 kilometers from Riyadh, as well as an additional 350 kW solar hydrogen demonstration plant.

The system operated well for its time, but the technology was nowhere near where it is today, which resulted in panel degradation of 20%. Operating temperatures were much higher than originally specified, and the heat sink insufficient for cooling.

From there continued a list of projects, including solar-powered water desalination, solar hydrogen utilization, solar water heating, and other PV research projects.

In 1990, the Persian Gulf War erupted and once again, Saudi Arabia saw solar power come via the United States. Solar panels were used to power GPS satellites, but just like the problem seen in the solar village, modules again quickly deteriorated in the harsh desert conditions.

There is little doubt that these observations helped shape the kingdom’s solar PV sector — and industry in general — but it would still take many years before substantial movement could be seen.

Broken promises

In April 2010, the King Abdullah City for Atomic and Renewable Energy (K.A.CARE) was established to be the “driving force for making atomic and renewable energy an integral part of a national sustainable energy mix.”

K.A.CARE’s target was to have 41 GW of renewable energy by 2032, with 16 GW of solar PV. In 2011, a contract was signed to establish a polysilicon plant in Jubail, which would begin the production of solar cell materials. Polysilicon Technology, alongside Hyundai Engineering and KCC Engineering and Construction, announced that it would build a $380 million plant to produce 3,350 metric tons of solar-grade polysilicon, with future expansion plans. This was one of many announcements that failed to materialize, as developer Polysilicon Technology later went bankrupt, according to local sources.

K.A.CARE went a step further in February 2013, when it published a white paper that announced a new renewable energy target of 54 GW by 2032 (41 GW was to be solar). And in the first five years, it planned for 5.1 GW to be installed, with 23.9 GW by 2020. The white paper has since been removed from the organization’s website, and K.A.CARE’s renewable energy ambitions disappeared along with it, as it began to focus more on nuclear power.

The new crown prince

Volatility in oil prices began in 2014, and it forced the country to broadly rethink its economic policies.

As Saudi Arabia grappled with the new normal of low oil prices, then deputy crown prince, Mohammed bin Salman, released a new economic vision for the country. The National Transformation Plan, part of the wider Vision 2030 agenda, was launched in 2016. It included a target to have 9.5 GW of solar and wind power feeding electricity into the national grid by 2023. It was understandable that the plan was met with leeriness, considering previous attempts to jump-start a renewable energy market in the country, but this time was different. This was the first time that Saudi Arabia had a government mandate to incorporate renewable energy into its overall energy mix.

In 2017, the Renewable Energy Project Development Office (REPDO) was created, featuring members from K.A.CARE, Saudi Aramco, Saudi Electricity Company, and the Electricity and Cogeneration Regulatory Authority. The new unit fell under the energy ministry’s oversight, and immediately began accepting applications from companies that were looking to participate in the development of 700 MW of solar and wind capacity projects.

Local company ACWA Power came in with the winning bid for the first utility-scale solar PV plant, Sakaka, at $0.0234/kWh. “PV is a no-brainer in our part of the world [to supply] a significant source of load,” said ACWA chief executive officer Paddy Padmanathan.

Yet what was also significant was how REPDO announced the winning bids, which was done via live stream. This showed a level of transparency that isn’t seen anywhere else in the region’s renewable energy sector.

In November 2018, Saudi Arabia’s first utility-scale solar PV project began construction, with more than 1.18 million modules and 1,200 new jobs. The Sakaka solar power plant began a new era in the kingdom, heralding a “more to come” drive with at least seven projects to be tendered in this year alone. And people started to believe it. In fact, Padmanathan said that throughout the region, more companies are jumping into the market — and they’re looking at Saudi Arabia. He estimates that over the past five years, there has been growth of 20% of new market players trying to get into the Middle East’s solar sector.

“Within the next five years, there will be a real race to deploy as much PV as possible throughout the region,” Padmanathan added.

And Saudi Arabia is a market mover for any sector, given its size and population of almost 33 million. So much so that many companies separate Saudi Arabia from their regional reports so that its size doesn’t skew results. The potential for the kingdom’s solar industry, coupled with its goal of creating a manufacturing hub, is enough to once again entice investors.

“We’ve been pushing anyone we’ve worked with for many years saying, ‘If you want to work with us and want to capture meaningful volumes — industrialize inside the kingdom,’” said Padmanathan.

Earlier this year, a Saudi consortium made up of the National Industrial Clusters Development Program and petrochemical giant SABIC, signed a memorandum of understanding with Longi Group and OCI for the development of a fully integrated solar manufacturing facility in the country. And such decisions may create momentum for others to move, particularly considering a potentially more favorable policy framework.

Gus Schellekens, a partner at the clean energy division of the consultancy EY, said that Saudi Arabia today is very different than pre-Vision 2030.

“New businesses are being set up that are very different to the old world that delivered success for the past 40 years,” Schellekens explained. Yet Saudi Arabia is still finding its footing. The head of REPDO, Turki Al Shehri, recently left the organization to join France’s Engie as the chief executive of Saudi Arabia. There has so far been no announcement about a replacement and sources have said that the energy ministry is instead looking to create a more centralized system.

It’s never an easy road when introducing a new model or system on a large scale, especially if people continue to focus on previous mistakes. “In the long run, there remains huge potential for Saudi Arabia, but it’s important to acknowledge practical challenges, and build on a robust plan that is integrated with other initiatives,” Schellekens concluded.

List of solar energy projects executed by KACST
ProjectsLocationYearsApplications
350 kW PV systemSolar Village1981-87DC/AC electricity for remote village
350 kW PV hydrogen production plantSolar Village1987-93Demonstration plant for hydrogen production
Solar coolingSaudi Universities1981-87Development of solar cooling laboratory
1 kW solar hydrogen generatorSolar Village1983-93Hydrogen production, testing, measurement laboratory scale
2 kW solar hydrogen (50 kWh)KAU, Jeddah1986-91Testing electrode materials for solar hydrogen plant
3 kW PV test systemSolar Village1987-90Demonstration of climactic effects
4 kW PV systemSouth of Saudi Arabia1996DC/AC grid connected
6 kW PV systemSolar Village1996-97Grid connection
Water desalination with PV (0.6m3/hour)Sadous Village1994-96PV/RO interface
PV in agriculture (4 kWp)Muzahmia1996DC/AC grid connected
Long-term performance of PV (3 kW)Solar VillageSince 1990Performance evaluation
Fuel cell development (100 – 1000 W)Solar Village1993-95Hydrogen utilization
Internal combustion engine (ICE)Solar Village1993-95Hydrogen utilization
Solar radiation measurement12 stations1994-95Saudi Solar Atlas
Wind energy measurement5 stations1994-95Saudi Solar Atlas
Geothermal power assessmentVarious locations1995-96Establishment of accurate resource data
Solar dryersAl-Hassa, Latif1988-93Food dryers (dates / vegetables etc.)
Solar thermal dishes (2×50 kW)Solar Village1986-94Advanced solar Sterling Engine
Energy management in buildingsDammam1988-93Energy efficiency
Solar collector developmentSolar Village1993-97Domestic, industrial, 

A Fine Couple They Are (Wind and Solar Power)

The pairing of wind and solar is emerging as a smart strategy to implement renewable energy sources with better economic feasibility. A Fine Couple They Are (Wind and Solar Power) as suggested by Jim Romeo would definitely affect this Energy Transition era if only in terms of duration.

The pairing of wind and solar power is an advantageous complement; the two benefit each other. The synergistic combination is an emerging trend in renewable energy and power generation as costs drop. The pairing of sustainable sources is in early stages, however. And the configuration still has challenges regarding return on investment (ROI), ease of implementation, and storage.

In western Minnesota, a 2-MW wind turbine and 500-kW solar installation—wind-solar hybrid project—is an early entrant to the wind-solar market and one of the first of its kind in the U.S. It was introduced at a cost of about $5 million with high expectations and the goal that Lake Region Electric Cooperative in Pelican Rapids would acquire the power for its 27,000 members.

The pioneering project got a boost amid the lower costs of solar. The power generation from both renewable sources is calculated to provide dividends on its investment.

According to market researcher Global Market Insights, hybrid solar-wind projects are expected to grow by 4% in the U.S. over the next five years to join a $1.5 billion global market. Some attribute the growth to the 2015 United Nations Climate Change Conference objectives, combined with lower costs of development and materials, and a keen interest by many nations to rely more on renewable energy sources. Because wind turbine power and solar both have excess capacity, together they offer far greater possibilities.

Lucrative but Limited

Renewables especially make economic sense in non-urban areas, where costs per kWh are higher, said Mike Voll, principal and sector lead for Smart Technologies at Stantec. “So, rural communities and remote locations, where energy prices often reach $0.40 to $0.45 per kilowatt-hour, actually see an ROI from these projects. When it comes to combining both wind and solar with storage, however, the list of locations is even smaller still. In a perfect world, we’d have a place that has excellent radiance with enough wind and low cloud cover, but the reality is there are very few locations that meet the geographic requirements. So even as the price continues to drop, there will still be significant limitations to pairing solar and wind.”

Despite limitations, renewables can work well in locations where everything clicks. A storage option is an essential component. “Adding energy storage can reduce intermittency of output, reshape the generation profile to match to load, and enable dispatch of the renewable energy to maximize revenue generation through ISO market participation or utility programs,” said Todd Tolliver, senior manager at ICF, a global consulting and technology services company headquartered in Fairfax, Virginia.

Tolliver said the economic viability of these systems is constrained by equipment, costs of storage, and limited or irregular revenue streams. But he explained that the most common combination today is solar plus battery storage, thanks to investment tax credit and incentive programs in certain markets that provide clear lower costs and better revenue streams. Still, wind power energy storage has challenges.

Related :

How countries can learn from Jordan’s renewable energy pivot

How countries can learn from Jordan’s renewable energy pivot

By 2021 the country is aiming to have well over half of its power generated by wind or solar energy In the meantime, how countries can learn from Jordan’s renewable energy pivot is elaborated on by Robin Mills, CEO of Qamar Energy and published on The National of June 10, 2019.

How countries can learn from Jordan’s renewable energy pivot
Jordan is using the vast expanse of sunny and windy Wadi Rum to harness its renewable ambitions.

On the road from Wadi Rum to Petra in Jordan, where signs point to the Sheikh Zayed solar complex, wind turbines turn languidly in a steady breeze. At Petra, even Bedouin encampments have solar panels and many homes in Amman use solar tubes to heat water. The UAE made headlines with its world-record solar installations, but in all the Middle East, the impact of the renewable revolution is most visible in the Jordanian landscape.

By last year, the Hashemite kingdom had installed 285 megawatts of wind and 771MW of solar power, a significant chunk of its total generation of about 4 gigawatts. By 2021, it wants to have 2.7GW of renewable capacity. Over the next decade, Jordan’s efforts could really take off – providing half of all electricity output, in our analysis at Qamar Energy. It is only a small market, but it is an important trailblazer for the region’s aspirations in renewables.

Jordan’s success has been built on good resources, solid policy and the imperatives of an energy crisis. Like most Middle East countries, the kingdom has abundant sunny desert land and, similar to Egypt and northern Saudi Arabia, it’s also quite windy in places.

The country started early on encouraging renewables with the Tafila wind farm, a joint venture with Masdar, built in 2015. It offers investors a reasonable return and gives smaller users such as hospitals and universities the chance to build solar panels on vacant land and transmit the power through a grid.

The biggest impetus to alternative energy was the cut-off from Egyptian gas supplies following the 2011 revolution, because of repeated militant attacks on the Sinai pipeline. Jordan’s budget deficit widened because the country, which imports more than 90 per cent of its energy needs and has historically financed its deficits through grants and soft loans, had to burn expensive oil for electricity. Jordan, which already hosted thousands of Iraqi refugees, had to accommodate an increasing power demand due to an influx of 1.3 million Syrians escaping the conflict in their country.

In response, the kingdom opened a liquefied natural gas import terminal at Aqaba, and negotiated supplies from the American company Noble, which produces from offshore Israel. Jordan has large resources of oil shale, effectively an immature form of petroleum source rocks, which can be cooked into oil. A Chinese-led consortium is developing a power plant based on burning this dirty material.

Jordan’s success has been built on good resources, solid policy and the imperatives of an energy crisis.

Efforts to construct a nuclear power plant have been hampered by a lack of cooling water, public opposition and the high costs of financing. Instead, Amman may opt for smaller, modular nuclear reactors that could be fabricated off-site.

To cover the higher costs of fuel, energy subsidies had to be cut back, putting a heavy burden on citizens at a time of sharp economic slowdown. But this had the positive effect of making individual rooftop solar installations attractive for small businesses and householders.

Local Jordanian companies, such as Kawar Energy and Shamsuna Power, along with Dubai-based companies including Yellow Door Energy, have created viable businesses and high-skilled employment. By the early 2020s, Jordan will have the Middle East’s lowest carbon output electricity grid, despite the carbon-heavy oil shale facility.

Success will soon bring its own challenges. Renewable output will exceed total demand at times, while the country still needs to provide for high-consumption and night-time periods. Hydropower, which could be used to store excess renewables, is minimal in the desert country.

The Red-Dead Sea project is intended to bring water to the Dead Sea, which is fast drying up due to climate change and the overuse of the Jordan River. On the way, the water would generate power for desalination. But the expensive venture faces environmental concerns and political hurdles in co-operating with Israel.

Philadelphia Solar, a local company, has announced plans for a solar plant with battery storage. Concentrated solar thermal plants (CSP), like the one under construction in Dubai, can save the Sun’s heat to generate power overnight. These do not seem to be part of Jordan’s plans yet, but the country has excellent conditions for CSP.

Electricity interconnections with Egypt, Saudi Arabia, Iraq and the West Bank are also underway, which could boost the resilience and renewable share of the whole area’s power grid. It could also send power to help rebuild war-torn Syria.

Jordan’s consumers will have to consider the benefits from the country’s renewable expansion, particularly industries which have complained of high electricity prices. Prices are high during peak demand hours, but this scheme will have to become more flexible to lower prices when there is an excess of solar.

Jordan’s small market and head start in renewable energy means it will reach these hurdles to solar deployment probably before any other country in the region. Its success in devising policies to continue attracting capital, boosting its renewable generation, local employment and electricity exports, while reducing consumer bills, will be an important signal for its neighbours.

This is particularly true for countries in the Arabian Gulf – whose utility companies are thinking about how to overcome similar barriers to their bold renewable plans. Such complementary resources and opportunities open the space for co-operation between these two regional allies.

Robin Mills is CEO of Qamar Energy and author of The Myth of the Oil Crisis.

Read More

Solar panels all over the Sahara desert?

Solar panels all over the Sahara desert?

– Imagine newsletter #2

subscribe to the Imagine newsletter

Solar panels all over the Sahara desert? Asked Will de Freitas, Environment + Energy Editor, The Conversation, starting with:

You may have seen a variant of this meme before. A map of North Africa is shown, with a surprisingly small box somewhere in Libya or Algeria shaded in. An area of the Sahara this size, the caption will say, could power the entire world through solar energy:

Over the years various different schemes have been proposed for making this idea a reality. Though a company called Desertec caused a splash with some bold ideas a decade ago, it collapsed in 2014 and none of the other proposals to export serious amounts of electricity from the Sahara to Europe and beyond are anywhere close to being realised.

It’s still hard to store and transport that much electricity from such a remote place, for one thing, while those people who do live in the Sahara may object to their homeland being transformed into a solar superpower. In any case, turning one particular region into a global energy hub risks all sorts of geopolitical problems.

The Imagine newsletter aims to tackle these big “what if” questions, so we asked a number of academics to weigh in on the challenges of exploiting the cheapest form of electricity from perhaps the cheapest and best spot on Earth.


Sahara has huge energy potential

Amin Al-Habaibeh is an engineer at Nottingham Trent University who has researched various options for Saharan solar.


Read more: Should we turn the Sahara Desert into a huge solar farm?


He points to the sheer size and amount of sunshine the Sahara desert receives:

  • It’s larger than Brazil and slightly smaller than the US.
  • If every drop of sunshine that hits the Sahara was converted into energy, the desert would produce enough electricity over any given period to power Europe 7,000 times over.
Solar panels all over the Sahara desert?
Global horizontal irradiation, a measure of how much solar power is received per year. Global Solar Atlas/World Bank

So even a small chunk of the desert could indeed power much of the world, in theory. But how would this be achieved?

Al-Habaibeh points to two main technologies. Both have their pros and cons.

  • Concentrated solar power uses lenses or mirrors to focus the sun’s energy in one spot, which becomes incredibly hot. This heat then generates electricity through a steam turbine.
  • In this image the tower in the middle is the “receiver” which then feeds heat to a generator:
Solar panels all over the Sahara desert?
Aerial view of a large concentrated solar power plant. Novikov Aleksey/Shutterstock
  • Some systems store the heat in the form of molten salt. This means they can release energy overnight, when the sun isn’t shining, providing a 24h supply of electricity.
  • Concentrated solar power is very efficient in hot, dry environments, but the steam generators use lots of water.
  • Then there are regular photovoltaic solar panels. These are much more flexible and easier to set up, but less efficient in the very hottest weather.

Overall, Al-Habaibeh is positive:

Just a small portion of the Sahara could produce as much energy as the entire continent of Africa does at present. As solar technology improves, things will only get cheaper and more efficient. The Sahara may be inhospitable for most plants and animals, but it could bring sustainable energy to life across North Africa – and beyond.


Solar panels could have remarkable impact on the desert though

Installing mass amounts of solar panels in the Sahara could also have a remarkable impact on the desert itself.

The Sahara hasn’t always been dry and sandy. Indeed, archaeologists have found traces of human societies in the middle of the desert, along with prehistoric cave paintings of Savannah animals. Along with climate records, this suggests that just a few thousand years ago the “desert” was far greener than today.

Solar panels all over the Sahara desert?
Long-extinct elephants still remain carved into rocks in southern Algeria. Dmitry Pichugin / shutterstock

Alona Armstrong, an environmental science lecturer at Lancaster University, wrote about a fascinating study in 2018 that suggested massive renewable energy farms could make the Sahara green again.


Read more: Massive solar and wind farms could bring vegetation back to the Sahara


A team of scientists imagined building truly vast solar and wind farms, far larger than most countries, and simulated the impact they would have on the desert around them. They found that:

  • Solar panels reflect less heat back into space compared to sand.
  • This means the surface would warm, causing air to rise and form clouds.
  • This would mean more rainfall, especially in the Sahel region at the southern edge of the desert.
  • And more vegetation would grow, which would absorb more heat, drive more precipitation, and so on
  • It’s an example of a climate feedback.
Solar panels all over the Sahara desert?
Large-scale wind and solar would mean more new rain in some areas than others. Eviatar Bach, CC BY-SA

This may be a nice side effect of a huge Saharan solar plant, but it doesn’t necessarily mean it should happen. As Armstrong points out:

These areas may be sparsely populated but people do live there, their livelihoods are there, and the landscapes are of cultural value to them. Can the land really be “grabbed” to supply energy to Europe and the Middle East?


Solar panels all over the Sahara desert?
Ghardaia, Algeria. Even in the middle of the Sahara, there are settlements. Sergey-73/Shutterstock

Is this climate colonialism?

If we want to deploy millions of solar panels in the Sahara, then who is “we”? Who pays for it, who runs it and, crucially, who gets the cheap electricity?

This is what worries Olúfẹ́mi Táíwò, a philosopher who researches climate justice at Georgetown University. He mentions Saharan solar power as one of the possible policies involved in a Green New Deal, a wide-ranging plan to enact a “green transition” over the next decade.


Read more: How a Green New Deal could exploit developing countries


He points out that exports of solar power could: “Exacerbate what scholars like sociologist Doreen Martinez call climate colonialism – the domination of less powerful countries and peoples through initiatives meant to slow the pace of global warming.”

  • While Africa may have abundant energy resources, the continent is also home to the people who are the least connected to the grid.
  • Solar exports risk “bolstering European energy security … while millions of sub-Saharan Africans have no energy of their own.”

What if we’re looking at the wrong desert?

All of this will be moot if Saharan solar never actually happens. And Denes Csala, a lecturer in energy systems at Lancaster University, is sceptical.


Read more: Why the new ‘solar superpowers’ will probably be petro-states in the Gulf


It’s true that much of the world’s best solar resources are found in the desert. Here’s a graph from his PhD research which shows how Saharan nations dominate:

Solar panels all over the Sahara desert?
The sunniest tenth of the world is mostly Saharan countries … and Saudi Arabia. Denes Csala / NREL, Author provided

But Denes says that we’re looking at the wrong desert. In fact, the countries of the Arabian peninsula are better placed to exploit the sun. He argues several factors work in favour of Saudi Arabia, the UAE and co:

  • They have a history of exporting oil.
  • In the energy market, worries over security of supply means countries tend to do business with the same partners over time.
  • Ports, pipes and other infrastructure that have been built to ship oil and gas could be repurposed to ship solar energy as hydrogen.

[Energy security] would be the Achilles heel of a northern African energy project: the connections to Europe would likely be the continent’s single most important critical infrastructure and, considering the stability of the region, it is unlikely that European countries would take on such a risk.

It would be fair to say academics have mixed views about the idea of mass Saharan solar. While the energy potential is obvious, and most of the necessary technology already exists, in the long run it may prove too complicated politically.


Still think this is all fantasy?

Maybe Europeans should look closer to home. The UK Planning Inspectorate is currently examining the Cleve Hill solar farm proposal in Kent, which would involve installing nearly a million solar panels across a marshland site the size of 600 football pitches. To protect against flooding, the panels would be mounted several metres in the air. If built, despite opposition from locals and conservationists, Cleve Hill would be by far the country’s largest solar farm and about the same size as Europe’s largest, near Bordeaux.

Alastair Buckley from the University of Sheffield points out the project would be groundbreaking as, unlike other ventures of this kind, it doesn’t rely on subsidies. With solar power getting ever cheaper, Cleve Hill – if it happens – seems to mark the moment when solar may start paying for itself – even far from the world’s deserts.

Further reading


What is Imagine?

Subscribe to the newsletter Imagine.

Imagine is a newsletter from The Conversation that presents a vision of a world acting on climate change. Drawing on the collective wisdom of academics in fields from anthropology and zoology to technology and psychology, it investigates the many ways life on Earth could be made fairer and more fulfilling by taking radical action on climate change. You are currently reading the web version of the newsletter.

Here’s the more elegant email-optimised version subscribers receive. To get Imagine delivered straight to your inbox, subscribe now.

Click here to subscribe to Imagine. Climate change is inevitable. Our response to it isn’t.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Egypt’s giant solar park operational in 2019

Egypt’s giant solar park operational in 2019

Reuters Sustainable Business May 5, 2019, reported that Egypt expects giant solar park to be fully operational in 2019. This piece of news went viral throughout the MENA region. Would Egypt’s giant solar park operational in 2019 be a new trend?

Image result for Egypt's giant solar park operational in 2019
Boats sail in the Nile river in Aswan on the road to the touristic Nubia, south of Egypt, October 1, 2015. REUTERS/Mohamed Abd El Ghany.

CAIRO (Reuters) – Egypt expects the 1.6-gigawatt solar park it is building in the south of the country to be operating at full capacity in 2019, the investment ministry said in a statement on Sunday.

The $2 billion project, set to be the world’s largest solar installation, has been partly funded by the World Bank, which invested $653 million through the International Finance Corporation.

Some parts of the park are already operating on a small scale, while other areas are still undergoing testing.

Egypt aims to meet 20 per cent of its energy needs from renewable sources by 2022 and up to 40 per cent by 2035. Renewable energy currently covers only about 3 per cent of the country’s needs.

“Egypt’s energy sector reforms have opened a wider door for private sector investments,” World Bank President David Malpass said during his visit to the site alongside Egypt’s Investment Minister Sahar Nasr.

Image result for Egypt’s Investment Minister Sahar Nasr
Egypt’s Investment Minister Sahar Nasr

Egypt is on a drive to lure back investors who fled following the 2011 uprising with a slew of economic reforms and incentives the government hopes will draw fresh capital and kickstart growth.

Most of the foreign direct investment Egypt attracts goes toward its energy sector.

Reporting by Ehab Farouk; Writing by Nadine Awadalla; Editing by Yousef Saba and Jan Harvey.

Further reading on this project can be found here; it is the World’s Largest Solar Park Project. Alcazar Energy’s 64 MW Solar PV plant (Picture above) is the first of thirty projects in the Benban Solar Park to complete construction and enter commercial operation. Benban will be the largest solar power installation in the world with up to 1.5 GW capacity located in Aswan, Egypt.