pub-9018797892728621, DIRECT, f08c47fec0942fa0
A New Solar and Lighting technology

A New Solar and Lighting technology

Sam Stranks, University of Cambridge describes “How a new solar and lighting technology could propel a renewable energy transformation”. This will undeniably come to some help those countries that have opted strongly for renewables, such as Tunisia.

The demand for cheaper, greener electricity means that the energy landscape is changing faster than at any other point in history. This is particularly true of solar-powered electricity and battery storage. The cost of both has dropped at unprecedented rates over the past decade and energy efficient technologies such as LED lighting have also expanded.

Access to cheap and ubiquitous solar power and storage will transform the way we produce and use power, allowing electrification of the transport sector. There is potential for new chemical-based economies in which we store renewable energy as fuels, and support new devices making up an “internet of things”.

But our current energy technologies won’t lead us to this future: we will soon hit efficiency and cost limits. The potential for future reductions in the cost of electricity from silicon solar, for example, is limited. The manufacture of each panel demands a fair amount of energy and factories are expensive to build. And although the cost of production can be squeezed a little further, the costs of a solar installation are now dominated by the extras – installation, wiring, the electronics and so on.

A New Solar and Lighting technology
Two workers with white gloves work on a solar panel.
Workers in a factory of a Chinese solar panel maker in Hangzhou, China. EPA/STR

This means that current solar power systems are unlikely to meet the required fraction of our 30 TeraWatt (TW) global power requirements (they produce less than 1 TW today) fast enough to address issues such as climate change.

Likewise, our current LED lighting and display technologies are too expensive and not of good enough colour quality to realistically replace traditional lighting in a short enough time frame. This is a problem, as lighting currently accounts for 5% of the world’s carbon emissions. New technologies are needed to fill this gap, and quickly.

Halide perovskites

Our lab in Cambridge, England, is working with a promising new family of materials known as halide perovskites. They are semiconductors, conducting charges when stimulated with light. Perovskite inks are deposited onto glass or plastic to make extremely thin films – around one hundredth of the width of a human hair – made up of metal, halide and organic ions. When sandwiched between electrode contacts, these films make solar cell or LED devices.

Amazingly, the colour of light they absorb or emit can be changed simply by tweaking their chemical structure. By changing the way we grow them, we can tailor them to be more suitable for absorbing light (for a solar panel) or emitting light (for an LED). This allows us to make different colour solar cells and LEDs emitting light from the ultra-violet, right through to the visible and near-infrared.

Despite their cheap and versatile processing, these materials have been shown to be remarkably efficient as both solar cells and light emitters. Perovskite solar cells hit 25.2% efficiency in 2019, hot on the heels of crystalline silicon cells at 26.7%, and perovskite LEDs are already approaching off-the-shelf organic light-emitting diode (OLED) performances.

These technologies are rapidly being commercialised, particularly on the solar cell front. UK-based Oxford Photovoltaics has built a production line and is filling its first purchase orders in early 2021. Polish company Saule Technologies released prototype products at the end of 2018, including a perovskite solar façade pilot. Chinese manufacturer Microquanta Semiconductor expects to produce more than 200,000 square meters of panels in its production line before year-end. The US-based Swift Solar (a company I co-founded) is pioneering high-performance cells with lightweight, flexible properties.

A New Solar and Lighting technology
Coloured perovskite light-emitting inks that can be cast down into thin films. © Sandeep Pathak, Author provided

Between these and other companies, there is rapid progress being made.

Solar windows and flexible panels

Unlike conventional silicon cells, which need to be very uniform for high efficiency, perovskite films are comprised of mosaic “grains” of highly variable size (from nano-meters to millimeters) and chemistry – and yet they perform nearly as well as the best silicon cells today. What’s more, small blemishes or defects in perovskite films do not lead to significant power losses. Such defects would be catastrophic for a silicon panel or a commercial LED.

Although we are still trying to understand this, these materials are forcing the community to rewrite the textbook for what we consider as an ideal semiconductor: they can have very good optical and electronic properties in spite of – or perhaps even because of – disorder.

A New Solar and Lighting technology
Light emitted from mosaic grains in a perovskite film
Light emitted from mosaic grains in a perovskite film. Dane deQuilettes/Sam Stranks

We could hypothetically use these materials to make “designer” coloured solar cells that blend in to buildings or houses, or solar windows that look like tinted glass yet generate power.

But the real opportunity is to develop highly efficient cells beyond the efficiency of silicon cells. For example, we can layer two different coloured perovskite films together in a “tandem” solar cell. Each layer would harvest different regions of the solar spectrum, increasing the overall efficiency of the cell.

Another example is what Oxford PV are pioneering: adding a perovskite layer on top of a standard silicon cell, boosting the efficiency of the existing technology without significant additional cost. These tandem layering approaches could quickly create a boost in efficiency of solar panels beyond 30%, which would reduce both the panel and system costs while also reducing their energy footprint.

These perovskite layers are also being developed to manufacture flexible solar panels that can be processed to roll like newsprint, further reducing costs. Lightweight, high-power solar also opens up possibilities for powering electric vehicles and communication satellites.

For LEDs, perovskites can achieve fantastic colour quality which could lead to advanced flexible display technologies. Perovskites could also give cheaper, higher quality white lighting than today’s commercial LEDs, with the “colour temperature” of a globe able to be manufactured to give cool or warm white light or any desired shade in between. They are also generating excitement as building blocks for future quantum computers, as well as X-Ray detectors for extremely low dose medical and security imaging.

Although the first products are already emerging, there are still challenges. One key issue is demonstrating long-term stability. But the research is promising, and once these are resolved, halide perovskites could truly propel the transformation of our energy production and consumption.

Sam Stranks, Lecturer in Energy and Royal Society University Research Fellow, University of Cambridge

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Arabic Citation Index in Egypt by Clarivate

Arabic Citation Index in Egypt by Clarivate

This image has an empty alt attribute; its file name is cision_logo.png

The most populous usage of the language and culture must be the reason Arabic Citation Index in Egypt by Clarivate has finally made it to the MENA region reports CISION’s PRNews.


Clarivate Launches the Arabic Citation Index in Egypt

Journal submissions now open to journals from across the 22 Arab League countries

LONDON, Aug. 17, 2020 /PRNewswire/ — Clarivate Plc (NYSE:CCC), a global leader in providing trusted information and insights to accelerate the pace of innovation, has now launched the Arabic Citation Index™ (ARCI), the world’s first local language citation index for the Arabic world in Egypt.

The ARCI is funded by the Egyptian government, and is available across the entire research community in Egypt. It is also open to journal submissions by editors of Arabic-language journals and will be open to researchers and organisations in all 22 nations of the Arab League by the end of 2020.

Powered by the Web of Science™, the world’s largest publisher-independent global citation index, the ARCI provides access to bibliographic information and citations to scholarly articles from over 400 expertly curated Arabic journals, with language interface in both English and Arabic. The indexing of Arabic publications will provide local scientific communities with improved routes to collaborating with national, regional, and international research efforts – extending the Arabic academic footprint.

The ARCI is now open for journal submissions. Journals will be selected by an expert, publisher-neutral editorial board from across Arab League Nations, who will provide regional insights and subject knowledge. Journals are eligible for inclusion if they meet the selection criteria, which require peer-reviewed and accessible content. The editorial board will consider trends in local research pursuits and publishing activity in the region.

Mukhtar Ahmed, President, Science Group at Clarivate said: “The Arabic Citation Index, hosted on the Web of Science, will provide scientific communities across the Arabic world with the ability to make their journals, and the discoveries within them, more accessible within their region and beyond. It will connect papers in Arabic journals to more than 1.7 billion cited references and the highest quality research from across the globe.

“The ARCI is a significant endeavour created in close partnership with the Egyptian government and represents the latest in a long series of developments and investments in the Web of Science platform. We believe that it will enable human ingenuity in the region, helping Arabic researchers and editors turn their discoveries into life-changing inventions.”

Dr. Tarek Showki, Minister of Education & Technical Education, Egypt, President of Egyptian Knowledge Bank Project said: “We are delighted to see the ARCI launch. It has long been part of our 2030 Vision to transform Egypt into a ‘knowledge economy’ and will be the first ever mapping of Arabic scholarly literature in a citation index, helping us to evaluate the quality and research output of Arabic researchers, universities and research organizations.”

Eng. Majid Al Sadek, Director of The Egyptian National Scientific and Technical Information Network (ENSTINET) added, “The indexing of Arabic publications will now provide our local scientific communities with the ability to contribute to not only national and regional research efforts but also internationally, helping us to extend the Arabic academic footprint further.” 

Mrs. Ola W. Laurence, Independent Consultant for the Professional Services of Egyptian Knowledge Bank was instrumental in driving this initiative forward.  She added, “This important project will make Arabic scholarly content more accessible, connecting it to more than 1.7 billion cited research references and the highest quality, peer-reviewed scholarly content from across the globe. I believe it will help drive usage of local content, as well as providing access to the highest-quality, peer-reviewed content from around the world.”

For more information on selection criteria, see the brochure, and click here for more information on how to submit a journal.

Notes to editors: The ARCI will be the fifth regional citation index developed by the Web of Science, alongside the Chinese Science Citation Database™ SciELO Citation Index™, Russian Science Citation Index™ and the KCI-Korean Journal Database™.

About Clarivate

Clarivate™ is a global leader in providing trusted information and insights to accelerate the pace of innovation. We offer subscription and technology-based solutions coupled with deep domain expertise that cover the entire lifecycle of innovation – from foundational research and ideas to protection and commercialization. Today, we’re setting a trail-blazing course to help customers turn bold ideas into life-changing inventions. Our portfolio consists of some of the world’s most trusted information brands, including the Web of Science™, Cortellis™, Derwent™, CompuMark™, MarkMonitor™ and Techstreet™. For more information, please visit clarivate.com.

About the Egyptian Knowledge Bank

The Egyptian Knowledge Bank is a national project launched in November 24th, 2015 by the President of Egypt, Abdel Fattah el-Sisi, to offer each Egyptian citizen with the chance to learn, think and innovate. The Egyptian Knowledge Bank is the largest digital library and online knowledge hub providing students, researchers and all Egyptians with access to free education and scientific publications in various branches of knowledge.

Forward-Looking Statements 

This press release and any statements included herein may contain forward-looking statements regarding Clarivate. Forward-looking statements provide current expectations or forecasts of future events and may include statements regarding results, anticipated synergies and other future expectations. These statements involve risks and uncertainties including factors outside of the control of Clarivate that may cause actual results to differ materially. Clarivate undertakes no obligation to update or revise the statements made herein, whether as a result of new information, future events or otherwise. 

Contact details: Amy Bourke-Waite, Director of External Communications, Science Group. Media.enquiries@clarivate.com

I tried to go zero-waste in 2019

I tried to go zero-waste in 2019

A Civilisation Hell bent on Destroying Itself seems to be what is pushing today’s people to try anything within their reach. For instance, Deepti Kannapan starts in his article dated August 5 by stating: I tried to go zero-waste in 2019 before adding ‘I bought my groceries bulk or package-free whenever I could, carried my own silverware to the work cafeteria, and stopped ordering food delivered to my house.’ Here is that article.


What Can One Person Do to Protect The Environment?

Three things: Innovate, call their Representative, and organize boycotts

Every time I went to a big-chain coffee store I made sure to pointedly ask for my coffee “for here, in a mug” while making eye contact with the cashier and miming holding a mug. Even with all this emphasis, about every one time in twenty I got handed a disposable coffee cup. At this point I’d be torn: that cup is going in the trash no matter what I did; but I dislike the experience of drinking from a disposable coffee cup. I usually ended up asking the barista to pour it into a mug for me.

Eventually, I told my regular barista that I’d quit disposable coffee cups as a new year’s resolution (which it was not). He changed the order and thanked me for making that resolution.

Most people reacted similarly when I told them what I was doing: with admiration, and then backing away by saying they could never do it themselves. Overall, not an encouraging reaction, because I’m not having much impact by myself. I’m just one person out of billions.

Innovate in your household.

My zero-waste experiment in 2019 resulted in a lot of frustration, but that frustration was useful. I deeply understood the difficulties of eschewing disposable cups.

Using this knowledge, I’ve been experimenting with methods to store my reusable cups and workflows for washing and replacing them. I’m hoping to find or develop a cup that’s fun to drink out of, easy to wash, store, and keep dry.

Innovations like this aren’t particularly high-tech or difficult to do, but that is how progress often happens. According to Eric Von Hippel, a professor who studies innovation at MIT,

Every field we look at in terms of the basic innovations, about half were done by users. And it’s fantastic. Companies very seldom mention the user-developed roots of their innovations.

If you’re frustrated by a problem, you’re uniquely qualified to figure out a solution, whether that’s a trash sorting system, a modified water bottle, or durable clothing.

People modifying products to make them do what they want is how we got the mountain bike. Companies often incorporate the modifications users want, as Von Hippel describes.

And then as a lot of people begin to do it, they say, “Aha! Not only is there a proven innovation, but there’s a signal of general demand.” And that’s the point at which you begin to define what a mountain bike should look like.

Participate in the political process.

Innovating helps create the technologies and processes that push the envelope beyond what we already have. Now the question is, will people use them?

They will if you regulate industries and compel them to adapt with the improvements in the state of the art.

Politics is an area where at first glance, it can seem like an individual voter has no influence. I found the idea of getting involved overwhelming. The 2018 election was the first time I participated beyond voting — I canvassed voters, phone banked, and called my Representatives, as often as I felt up to it, and eased my way into greater engagement.

And the results showed me how momentum can build.

Start small. Sign up for a mailing list of an organization like the Sierra Club, League of Conservation Voters, or any group that resonates with you, and keep aware of environment-related bills that are coming up in your state or country.

Then, after a while, when you feel brave enough, call your Member of Congress or whoever represents you win your government, and tell them how you’d like them to vote on it.

Organize boycotts.

I put this last because this is where most people assume you have to start. I am in favor of boycotts, but only when there is enough leverage to give them a chance of success.

Boycotts tend to work by tarnishing a company’s brand. They work best when the company has a good reputation that is sliding, and that it wants to restore. Boycotts don’t need to significantly impact the company’s revenue to succeed.

Most importantly, they need to be well-organized, focused, and strategic. So just buying what you approve of and not buying what you don’t will not have much of an impact.

Zephyr Teachout, an author and associate professor of law at Fordham Law School, wrote in a recent Atlantic article:

[…] we have somehow inculcated a belief that if someone fails to boycott a company, she lacks standing to object to political behavior or to petition Congress for change. People feel guilty about not boycotting, and that guilt gets in the way of full-throated political protest.

There’s no need to feel guilty about the products you buy. You can’t boycott every flawed product in the world at once; you wouldn’t be able to live.

It’s a good idea to learn to plan an effective boycott. It starts with choosing the right target — a company that is sensitive to criticism. Done right, boycotts can succeed.

Think big.

My avoidance of disposable coffee cups probably didn’t cause the coffee shop to order fewer of them. It probably didn’t cause the overall market for disposable cups to decrease, or fewer cups to be manufactured.

That’s okay because my experiment got me thinking bigger — about the possible products we haven’t yet invented, the legislation we need, and the markets and industries as a whole.

It got me thinking about where we have the most leverage. That’s where we are going to act.

Here’s the workbook I use for researching and selecting sustainable products.Sustainability Experiments

Tools and processes as building blocks to a better supply chain

F

WRITTEN BY

Deepti Kannapan

Where does MENA stand with digital skills?

Where does MENA stand with digital skills?

The World Bank‘s question in its Starting line — Where does MENA stand with digital skills? is answered by Andreas Blom, Nicole Goldin, Mariam Nusrat as follows.

July 14, 2020

The key to success in this changing landscape is a digital skills revolution.
The key to success in this changing landscape is a digital skills revolution. (Photo credit: GaudiLab/Shutterstock)

Not that long ago, people like Abdullah, a young Syrian man who was forced by the ongoing war to drop out of university, would have found it nearly impossible to safely earn a living. But through Edraak, an Arabic platform for open online education launched by the Queen Rania Foundation in Jordan, he gained graphic design and digital marketing skills. Now, he earns a decent living as a freelance remote worker in Jordan.

Abdullah’s story is emblematic of how the global phenomena of digitization is transforming life in the Middle East and North Africa. By 2025, the Middle East is estimated to have 160 million potential digital users who will contribute significantly to rapid economic growth. 

Amid the dual economic shocks of the COVID-19 pandemic and the collapse in oil prices, digital platforms are becoming even more critical to the region’s economy. With schools being closed since March and 4 in 5 workers affected by business closures globally, per International Labor Organization estimates, the shut-down of public life has revved up the need to move to digital, virtual, and remote learning solutions to build skills and ensure opportunities for people to earn a living.

Yet this emergency need is not being met. Moreover, MENA is missing real-time opportunities for digital development. Digital transformation can lead to rapid, sustained growth, but only if countries invest in digital infrastructure and human capital.

The key to success in this changing landscape is a digital skills revolution. While definitions and typologies differ, ‘digital skills’ generally refers to students, workers and people of all ages having and applying competencies, knowledge and attitudes to learn, earn and thrive in digital societies.

Digital skills most commonly comprise a continuum of basic, intermediate or advanced skills; and, as we will discuss in our next blog on competencies, they may also refer to a range of different abilities, many of which are not only ‘skills’ per se, but a combination of behaviors, expertise, know-how, work habits, character traits, dispositions and critical understandings.

As laid out by the International Telecommunication Union, Basic Skills are the general ICT skills required “broadly for all workers, consumers and citizens in a digital society” — such as word processing or researching online. Building on that foundation, Intermediate Skills are “effectively job-ready skills needed to perform more complicated work-related functions” such as social media marketing or e-commerce. Advanced or ‘Specialist’ Skills, which “form the basis of specialist occupations and professions,” are necessary to test, analyze, manage, or create digitally based products or services. These advance skills are needed to harness technology to resolve complex problems, guide others such as policymakers, contribute to professional practices, and propose new innovative ideas to advance economic development.

Where does MENA stand with digital skills?

Skills are the supply side of digital labor markets; jobs are the demand side. Digital or ICT work can be conceived in three terms: enhanced, dependent, intensive. Some jobs are enhanced by digital tools, whereas with others — such as Internet freelancing or call centers — technology is fundamental to the work. Digitally intensive work — such as machine learning or app development — requires more specialist and advanced skills.

While data is sparse and likely not as up-to-date as the pace of change, we have learned important baseline details about the digital skills match — or mismatch — in MENA’s digital labor market. There is a shortage of digital human capital in MENA, marked by skills and information gaps. For example, in its 2017Future of Work study, McKinsey found that across the region, only 1.7% of the workforce is ‘digital talent.’ In their last 2017 skills survey of the region, Bayt/YouGov, a leading jobs website in MENA, revealed that IT jobs are among the top open positions, evidence of an acute talent and skills shortage in the region.

The Gulf countries are arguably the most advanced in terms of digital transformation. Yet, GCC countries still have a significant digital skills gap. In a 2020 survey by PwC of CEOs in the Middle East, 70% said the availability of key digital skills is a business threat, and an earlier 2017 study found that only one of the 10 skills most commonly cited by digital professionals in the GCC matches the fastest-growing skills found globally on LinkedIn. Furthermore, none of the top 10 available skills in the GCC is a technical or specific digital skill.

Beyond these baselines, there is much we do not know. Researchers need employment surveys at the country level and more complete, recent data to better inform policies and programs that drive digital skills development. 

In this blog series, MENA Digital Directions, we will analyze and compare digital skills competence frameworks, discuss how to build digital skills across the educational pipeline, explore the role of the private sector and identify digital opportunities for women, youth and refugees. With a thorough understanding of the digital landscape and the right investments in digital infrastructure and skills, countries can ensure that more young people like Abdullah have a chance for a brighter, more connected future.

To get an idea of the MENA’s current and successful blogs, see Anuj Agarwal’s blog. https://blog.feedspot.com/middle_east_blogs/

17 ways technology could change the world by 2025

17 ways technology could change the world by 2025

In its series Future shocks: 17 technology predictions for 2025, the World Economic Forum came up with 17 ways technology could change the world by 2025 as follows. But Human Brilliance, Ingenuity and Skills will always be needed.

  • We asked our 2020 intake of Technology Pioneers for their views on how technology will change the world in the next five years.
  • From quantum computers and 5G in action to managing cancer chronically, here are their predictions for our near-term future.
Image: Getty Images/iStockphoto
1. AI-optimized manufacturing

Paper and pencil tracking, luck, significant global travel and opaque supply chains are part of today’s status quo, resulting in large amounts of wasted energy, materials and time. Accelerated in part by the long-term shutdown of international and regional travel by COVID-19, companies that design and build products will rapidly adopt cloud-based technologies to aggregate, intelligently transform, and contextually present product and process data from manufacturing lines throughout their supply chains. By 2025, this ubiquitous stream of data and the intelligent algorithms crunching it will enable manufacturing lines to continuously optimize towards higher levels of output and product quality – reducing overall waste in manufacturing by up to 50%. As a result, we will enjoy higher quality products, produced faster, at lower cost to our pocketbooks and the environment.

Anna-Katrina Shedletsky, CEO and Founder of Instrumental

Image: Getty Images/iStockphoto
2. A far-reaching energy transformation

In 2025, carbon footprints will be viewed as socially unacceptable, much like drink driving is today. The COVID-19 pandemic will have focused the public’s attention on the need to take action to deal with threats to our way of life, our health and our future. Public attention will drive government policy and behavioural changes, with carbon footprints becoming a subject of worldwide scrutiny. Individuals, companies and countries will seek the quickest and most affordable ways to achieve net-zero – the elimination of their carbon footprint. The creation of a sustainable, net-zero future will be built through a far-reaching energy transformation that significantly reduces the world’s carbon emissions, and through the emergence of a massive carbon management industry that captures, utilizes and eliminates carbon dioxide. We’ll see a diversity of new technologies aimed at both reducing and removing the world’s emissions – unleashing a wave of innovation to compare with the industrial and digital Revolutions of the past.

Steve Oldham, CEO of Carbon Engineering

Image: Getty Images/iStockphoto
3. A new era of computing

By 2025, quantum computing will have outgrown its infancy, and a first generation of commercial devices will be able tackle meaningful, real-world problems. One major application of this new kind of computer will be the simulation of complex chemical reactions, a powerful tool that opens up new avenues in drug development. Quantum chemistry calculations will also aid the design of novel materials with desired properties, for instance better catalysts for the automotive industry that curb emissions and help fight climate change. Right now, the development of pharmaceuticals and performance materials relies massively on trial and error, which means it is an iterative, time-consuming and terribly expensive process. Quantum computers may soon be able to change this. They will significantly shorten product development cycles and reduce the costs for R&D.

Thomas Monz, Co-Founder and CEO of Alpine Quantum Technologies

Image: Getty Images/iStockphoto
4. Healthcare paradigm shift to prevention through diet

By 2025, healthcare systems will adopt more preventative health approaches based on the developing science behind the health benefits of plant-rich, nutrient-dense diets. This trend will be enabled by AI-powered and systems biology-based technology that exponentially grows our knowledge of the role of specific dietary phytonutrients in specific human health and functional outcomes. After the pandemic of 2020, consumers will be more aware of the importance of their underlying health and will increasingly demand healthier food to help support their natural defences. Armed with a much deeper understanding of nutrition, the global food industry can respond by offering a broader range of product options to support optimal health outcomes. The healthcare industry can respond by promoting earth’s plant intelligence for more resilient lives and to incentivize people to take care of themselves in an effort to reduce unsustainable costs.

Jim Flatt, Co-Founder and CEO of Brightseed

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
5. 5G will enhance the global economy and save lives

Overnight, we’ve experienced a sharp increase in delivery services with a need for “day-of” goods from providers like Amazon and Instacart – but it has been limited. With 5G networks in place, tied directly into autonomous bots, goods would be delivered safely within hours.

Wifi can’t scale to meet higher capacity demands. Sheltering-in-place has moved businesses and classrooms to video conferencing, highlighting poor-quality networks. Low latency 5G networks would resolve this lack of network reliability and even allow for more high-capacity services like telehealth, telesurgery and ER services. Businesses can offset the high cost of mobility with economy-boosting activities including smart factories, real-time monitoring, and content-intensive, real-time edge-compute services. 5G private networks make this possible and changes the mobile services economy.

The roll-out of 5G creates markets that we only imagine – like self-driving bots, along with a mobility-as-a-service economy – and others we can’t imagine, enabling next generations to invent thriving markets and prosperous causes.

Maha Achour, Founder and CEO of Metawave

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
6. A new normal in managing cancer

Technology drives data, data catalyzes knowledge, and knowledge enables empowerment. In tomorrow’s world, cancer will be managed like any chronic health condition —we will be able to precisely identify what we may be facing and be empowered to overcome it.

In other words, a new normal will emerge in how we can manage cancer. We will see more early and proactive screening with improved diagnostics innovation, such as in better genome sequencing technology or in liquid biopsy, that promises higher ease of testing, higher accuracy and ideally at an affordable cost. Early detection and intervention in common cancer types will not only save lives but reduce the financial and emotional burden of late discovery.

We will also see a revolution in treatment propelled by technology. Gene editing and immunotherapy that bring fewer side effects will have made greater headway. With advances in early screening and treatment going hand in hand, cancer will no longer be the cursed ‘C’ word that inspires such fear among people.

Sizhen Wang, CEO of Genetron Health

Image: Getty Images/iStockphoto
7. Robotic retail

Historically, robotics has turned around many industries, while a few select sectors – such as grocery retail – have remained largely untouched . With the use of a new robotics application called ‘microfulfillment’, Grocery retailing will no longer look the same. The use of robotics downstream at a ‘hyper local’ level (as opposed to the traditional upstream application in the supply chain) will disrupt this 100-year-old, $5 trillion industry and all its stakeholders will experience significant change. Retailers will operate at a higher order of magnitude on productivity, which will in turn result in positive and enticing returns in the online grocery business (unheard of at the moment). This technology also unlocks broader access to food and a better customer proposition to consumers at large: speed, product availability and cost. Microfulfillment centers are located in existing (and typically less productive) real estate at the store level and can operate 5-10% more cheaply than a brick and mortar store. We predict that value will be equally captured by retailers and consumers as online.

Jose Aguerrevere, Co-Founder, Chairman and CEO of Takeoff Technologies

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
8. A blurring of physical and virtual spaces

One thing the current pandemic has shown us is how important technology is for maintaining and facilitating communication – not simply for work purposes, but for building real emotional connections. In the next few years we can expect to see this progress accelerate, with AI technology built to connect people at a human level and drive them closer to each other, even when physically they’re apart. The line between physical space and virtual will forever be blurred. We’ll start to see capabilities for global events – from SXSW to the Glastonbury Festival – to provide fully digitalized alternatives, beyond simple live streaming into full experiences. However, it’s not as simple as just providing these services – data privacy will have to be prioritised in order to create confidence among consumers. At the beginning of the COVID-19 pandemic we saw a lot in the news about concerns over the security of video conferencing companies. These concerns aren’t going anywhere and as digital connectivity increases, brands simply can’t afford to give users anything less than full transparency and control over their data.

Tugce Bulut, CEO of Streetbees

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
9. Putting individuals – not institutions – at the heart of healthcare

By 2025, the lines separating culture, information technology and health will be blurred. Engineering biology, machine learning and the sharing economy will establish a framework for decentralising the healthcare continuum, moving it from institutions to the individual. Propelling this forward are advances in artificial intelligence and new supply chain delivery mechanisms, which require the real-time biological data that engineering biology will deliver as simple, low-cost diagnostic tests to individuals in every corner of the globe. As a result, morbidity, mortality and costs will decrease in acute conditions, such as infectious diseases, because only the most severe cases will need additional care. Fewer infected people will leave their homes, dramatically altering disease epidemiology while decreasing the burden on healthcare systems. A corresponding decrease in costs and increase in the quality of care follows, as inexpensive diagnostics move expenses and power to the individual, simultaneously increasing the cost-efficiency of care. Inextricable links between health, socio-economic status and quality of life will begin to loosen, and tensions that exist by equating health with access to healthcare institutions will dissipate. From daily care to pandemics, these converging technologies will alter economic and social factors to relieve many pressures on the global human condition.

Rahul Dhanda, Co-Founder and CEO of Sherlock Biosciences

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
10. The future of construction has already begun

Construction will become a synchronized sequence of manufacturing processes, delivering control, change and production at scale. It will be a safer, faster and more cost-effective way to build the homes, offices, factories and other structures we need to thrive in cities and beyond. As rich datasets are created across the construction industry through the internet of things, AI and image capture, to name a few, this vision is already coming to life. Using data to deeply understand industry processes is profoundly enhancing the ability of field professionals to trust their instincts in real-time decision making, enabling learning and progress while gaining trust and adoption.

Actionable data sheds light where we could not see before, empowering leaders to manage projects proactively rather than reactively. Precision in planning and execution enables construction professionals to control the environment, instead of it controlling them, and creates repeatable processes that are easier to control, automate, and teach.

That’s the future of construction. And it’s already begun.

Meirav Oren, CEO and Co-Founder of Versatile

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
11. Gigaton-scale CO2 removal will help to reverse climate change

A scale up of negative emission technologies, such as carbon dioxide removal, will remove climate-relevant amounts of CO2 from the air. This will be necessary in order to limit global warming to 1.5°C. While humanity will do everything possible to stop emitting more carbon into the atmosphere, it will also do everything it can in order to remove historic CO2 from the air permanently. By becoming widely accessible, the demand for CO2 removal will increase and costs will fall. CO2 removal will be scaled up to the gigaton-level, and will become the responsible option for removing unavoidable emissions from the air. It will empower individuals to have a direct and climate-positive impact on the level of CO2 in the atmosphere. It will ultimately help to prevent global warming from reaching dangerous levels and give humanity the potential to reverse climate change.

Jan Wurzbacher, Co-Founder and co-CEO of Climeworks

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
12. A new era in medicine

Medicine has always been on a quest to gather more knowledge and understanding of human biology for better clinical decision-making. AI is that new tool that will enable us to extract more insights at an unprecedented level from all the medical ‘big data’ that has never really been fully taken advantage of in the past. It will shift the world of medicine and how it is practiced.

Brandon Suh, CEO of Lunit

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
13. Closing the wealth gap

Improvements in AI will finally put access to wealth creation within reach of the masses. Financial advisors, who are knowledge workers, have been the mainstay of wealth management: using customized strategies to grow a small nest egg into a larger one. Since knowledge workers are expensive, access to wealth management has often meant you already need to be wealthy to preserve and grow your wealth. As a result, historically, wealth management has been out of reach of those who needed it most. Artificial intelligence is improving at such a speed that the strategies employed by these financial advisors will be accessible via technology, and therefore affordable for the masses. Just like you don’t need to know how near-field communication works to use ApplePay, tens of millions of people won’t have to know modern portfolio theory to be able to have their money work for them.

Atish Davda, Co-Founder and CEO of Equityzen

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
14. A clean energy revolution supported by digital twins

Over the next five years, the energy transition will reach a tipping point. The cost of new-build renewable energy will be lower than the marginal cost of fossil fuels. A global innovation ecosystem will have provided an environment in which problems can be addressed collectively, and allowed for the deployment of innovation to be scaled rapidly. As a result, we will have seen an astounding increase in offshore wind capacity. We will have achieved this through an unwavering commitment to digitalization, which will have gathered a pace that aligns with Moore’s law to mirror solar’s innovation curve. The rapid development of digital twins – virtual replicas of physical devices – will support a systems-level transformation of the energy sector. The scientific machine learning that combines physics-based models with big data will lead to leaner designs, lower operating costs and ultimately clean, affordable energy for all. The ability to monitor structural health in real-time and fix things before they break will result in safer, more resilient infrastructure and everything from wind farms to bridges and unmanned aerial vehicles being protected by a real-time digital twin.

Thomas Laurent, CEO of Akselos

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
15. Understanding the microscopic secrets hidden on surfaces

Every surface on Earth carries hidden information that will prove essential for avoiding pandemic-related crises, both now and in the future. The built environment, where humans spend 90% of their lives, is laden with naturally occurring microbiomes comprised of bacterial, fungal and viral ecosystems. Technology that accelerates our ability to rapidly sample, digitalize and interpret microbiome data will transform our understanding of how pathogens spread. Exposing this invisible microbiome data layer will identify genetic signatures that can predict when and where people and groups are shedding pathogens, which surfaces and environments present the highest transmission risk, and how these risks are impacted by our actions and change over time. We are just scratching the surface of what microbiome data insights offer and will see this accelerate over the next five years. These insights will not only help us avoid and respond to pandemics, but will influence how we design, operate and clean environments like buildings, cars, subways and planes, in addition to how we support economic activity without sacrificing public health.

Jessica Green, Co-Founder and CEO of Phylagen

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
16. Machine learning and AI expedite decarbonization in carbon-heavy industries

Over the next five years, carbon-heavy industries will use machine learning and AI technology to dramatically reduce their carbon footprint. Traditionally, industries like manufacturing and oil and gas have been slow to implement decarbonization efforts as they struggle to maintain productivity and profitability while doing so. However, climate change, as well as regulatory pressure and market volatility, are pushing these industries to adjust. For example, oil and gas and industrial manufacturing organizations are feeling the pinch of regulators, who want them to significantly reduce CO2 emissions within the next few years. Technology-enabled initiatives were vital to boosting decarbonizing efforts in sectors like transportation and buildings – and heavy industries will follow a similar approach. Indeed, as a result of increasing digital transformation, carbon-heavy sectors will be able to utilize advanced technologies, like AI and machine learning, using real-time, high-fidelity data from billions of connected devices to efficiently and proactively reduce harmful emissions and decrease carbon footprints.

David King, CEO of FogHorn Systems

17 ways technology could change the world by 2025
Image: Getty Images/iStockphoto
17. Privacy is pervasive – and prioritized

Despite the accelerating regulatory environments we’ve seen surface in recent years, we are now just seeing the tip of the privacy iceberg, both from a regulatory and consumer standpoint. Five years from now, privacy and data-centric security will have reached commodity status – and the ability for consumers to protect and control sensitive data assets will be viewed as the rule rather than the exception. As awareness and understanding continue to build, so will the prevalence of privacy preserving and enhancing capabilities, namely privacy-enhancing technologies (PET). By 2025, PET as a technology category will become mainstream. They will be a foundational element of enterprise privacy and security strategies rather than an added-on component integrated only meet a minimum compliance threshold. While the world will still lack a global privacy standard, organizations will embrace a data-centric approach to security that provides the flexibility necessary to adapt to regional regulations and consumer expectations. These efforts will be led by cross-functional teams representing the data, privacy and security interests within an organization.

Ellison Anne Williams, Founder and CEO of Enveil

Image: Getty Images/iStockphoto
How will technology change the world in the next five years?

It is very exciting to see the pace and transformative potential of today’s innovative technologies being applied to solve the world’s most pressing problems, such as feeding a global and growing population; improving access to and quality of healthcare; and significantly reducing carbon emissions to arrest the negative effects of climate change. The next five years will see profound improvements in addressing these challenges as entrepreneurs, the investment community and the world’s largest enterprise R&D organizations focus on developing and deploying solutions that will deliver tangible results.

While the COVID-19 pandemic has provided a difficult lesson in just how susceptible our world is today to human and economic turmoil, it has also – perhaps for the first time in history – necessitated global collaboration, data transparency and speed at the highest levels of government in order to minimize an immediate threat to human life. History will be our judge, but despite the heroic resolve and resiliency on a country by country basis, as a world we have underperformed. As a global community and through platforms like the World Economic Forum, we must continue to bring visibility to these issues while recognizing and supporting the opportunities for technology and innovation that can best and most rapidly address them.

Robert Piconi, CEO of Energy Vault

Have you read?

Find out more in :

Record-tall Wind Turbine Towers with 3D-printed Concrete Bases

Record-tall Wind Turbine Towers with 3D-printed Concrete Bases


WEBWIRE  in its 17 June 2020 article on GE Renewable Energy, COBOD and LafargeHolcim co-develop record-tall wind turbine towers with 3D-printed concrete bases dated Wednesday, June 17, 2020 could a definite step forward on the way towards clean energy.

Record-tall Wind Turbine Towers with 3D-printed Concrete Bases
  • Historic multi-year collaboration between three leaders in their industry to increase renewable energy production and use
  • Wind turbine towers have typically been limited to a height of under 100 meters, as they are traditionally built in steel or precast concrete
  • Printing the base directly on-site with 3D-printed concrete technology will enable the creation of larger bases and cost-effective taller hybrid towers, reaching up to 200 meters
  • Taller towers capture stronger winds, thereby generating more energy at a lower cost
  • First prototype successfully printed in October 2019

GE Renewable Energy, COBOD and LafargeHolcim announced today that they will partner to co-develop wind turbines with optimized 3D printed concrete bases, reaching record heights up to 200 meters. The three partners will undertake a multi-year collaboration to develop this innovative solution, which will increase renewable energy production while lowering the Levelized Cost of Energy (LCOE) and optimizing construction costs. The partners will produce ultimately a wind turbine prototype with a printed pedestal, and a production ready printer and materials range to scale up production. The first prototype, a 10-meter high tower pedestal, was successfully printed in October 2019 in Copenhagen. By exploring ways to economically develop taller towers that capture stronger winds, the three partners aim to generate more renewable energy per turbine.

Building on the industry-leading expertise of each partner, this collaboration aims to accelerate the access and use of renewable energy worldwide. GE Renewable Energy will provide expertise related to the design, manufacture and commercialization of wind turbines, COBOD will focus on the robotics automation and 3D printing and LafargeHolcim will design the tailor-made concrete material, its processing and application.

“Concrete 3D printing is a very promising technology for us, as its incredible design flexibility expands the realm of construction possibilities. Being both a user and promoter of clean energy, we are delighted to be putting our material and design expertise to work in this groundbreaking project, enabling cost efficient construction of tall wind turbine towers and accelerating access to renewable energy,” explained Edelio Bermejo, Head of R&D for LafargeHolcim.

Henrik Lund-Nielsen, founder of COBOD International A/S added: “We are extremely proud to be working with world-class companies like GE Renewable Energy and LafargeHolcim. With our groundbreaking 3D printing technology combined with the competence and resources of our partners, we are convinced that this disruptive move within the wind turbines industry will help drive lower costs and faster execution times, to benefit customers and lower the CO2 footprint from the production of energy.

“3D printing is in GE’s DNA and we believe that Large Format Additive Manufacturing will bring disruptive potential to the Wind Industry. Concrete printing has advanced significantly over the last five years and we believe is getting closer to have real application in the industrial world. We are committed to taking full advantage of this technology both from the design flexibility it allows as well as for the logistic simplification it enables on such massive components,” said Matteo Bellucci Advanced Manufacturing Technology Leader for GE Renewable Energy.

Traditionally built in steel or precast concrete, wind turbine towers have typically been limited to a height of under 100 meters, as the width of the base cannot exceed the 4.5-meter diameter that can be transported by road, without excessive additional costs. Printing a variable height base directly on-site with 3D-printed concrete technology will enable the construction of towers up to 150 to 200 meters tall. Typically, a 5 MW turbine at 80 meters generates, yearly, 15.1 GWh. In comparison, the same turbine at 160 meters would generate 20.2 GWh, or more than 33% extra power.

About LafargeHolcim
LafargeHolcim is the global leader in building materials and solutions and active in four business segments: Cement, Aggregates, Ready-Mix Concrete and Solutions & Products. Its ambition is to lead the industry in reducing carbon emissions and shifting towards low-carbon construction. With the strongest R&D organization in the industry, the company seeks to constantly introduce and promote high-quality and sustainable building materials and solutions to its customers worldwide – whether individual homebuilders or developers of major infrastructure projects. LafargeHolcim employs over 70,000 employees in over 70 countries and has a portfolio that is equally balanced between developing and mature markets.

About COBOD International A/S
COBOD International is a globally leading 3D construction printing company, supplying 3D construction printing technology to customers in Asia, The Middle East, Europe and the US. COBOD intent to disrupt the construction industry and any industry where concrete structures are being applied. COBOD has made headlines multiple times the last couple of years from the 3D printing of the first fully permitted building in Europe in 2017, over the delivery of the largest construction printer in the world measuring 27 meters in length and 10 meter in height to the live 3D printing of a small house per day during the Bautec, a German construction exhibition. German Peri Group, the leading provider of manual concrete casting form work equipment is a minority shareholder of COBOD. Follow us on www.COBOD.com

About GE Renewable Energy
GE Renewable Energy is a $15 billion business which combines one of the broadest portfolios in the renewable energy industry to provide end-to-end solutions for our customers demanding reliable and affordable green power. Combining onshore and offshore wind, blades, hydro, storage, utility-scale solar, and grid solutions as well as hybrid renewables and digital services offerings, GE Renewable Energy has installed more than 400+ gigawatts of clean renewable energy and equipped more than 90 percent of utilities worldwide with its grid solutions. With nearly 40,000 employees present in more than 80 countries, GE Renewable Energy creates value for customers seeking to power the world with affordable, reliable and sustainable green electrons.

Follow these at :

www.ge.com/renewableenergy on www.linkedin.com/company/gerenewableenergy 

or on www.twitter.com/GErenewables

and 3D concrete printing at LafargeHolcim