AI used to examine construction following earthquakes

AI used to examine construction following earthquakes

SmartCitiesWorld News team informs that AI is used to examine construction following earthquakes in its vital assessment concerning quality, safety and potential risks in its future usage.

The picture above is about how an App helps engineers identify structural issues. Photo courtesy: Build Change

AI used to examine construction following earthquakes

An open-source project hosted by the Linux Foundation with support from IBM and Call for Code will use machine learning to help inform quality assurance for construction in emerging nations.

A new open source machine learning tool has been developed to help inform quality assurance for construction in emerging nations.

Build Change, with support from IBM as part of the Call for Code initiative, created the Intelligent Supervision Assistant for Construction (ISAC-SIMO) tool to feedback on specific construction elements such as masonry walls and reinforced concrete columns.

Structural issues

The aim is to help engineers identify structural issues in masonry walls or concrete columns, especially in areas affected by disasters.

Users can choose a building element check and upload a photo from the site to receive a quick assessment.

“ISAC-SIMO has amazing potential to radically improve construction quality and ensure that homes are built or strengthened to a resilient standard, especially in areas affected by earthquakes, windstorms, and climate change,” said Dr Elizabeth Hausler, founder and CEO of Build Change.

“We’ve created a foundation from which the open source community can develop and contribute different models to enable this tool to reach its full potential. The Linux Foundation, building on the support of IBM over these past three years, will help us build this community.”

The ISAC-SIMO project, hosted by the Linux Foundation, was imagined as a solution to help bridge gaps in technical knowledge that were apparent in the field. It packages important construction quality assurance checks into a mobile app.

“ISAC-SIMO has amazing potential to radically improve construction quality and ensure that homes are built or strengthened to a resilient standard, especially in areas affected by earthquakes, windstorms, and climate change”

The app ensures that workmanship issues can be more easily identified by anyone with a phone, instead of solely relying on technical staff. It does this by comparing user-uploaded images against trained models to assess whether the work done is broadly acceptable (go) or not (no go) along with a specific score.

Workmanship issues can be identified by anyone with a phone. Photo courtesy: Build Change

“Due to the pandemic, the project deliverables and target audience have evolved. Rather than sharing information and workflows between separate users within the app, the app has pivoted to provide tools for each user to perform their own checks based on their role and location,” added Daniel Krook, IBM chief technology officer for the Call for Code initiative.

“This has led to a general framework that is well-suited for plugging in models from the open source community, beyond Build Change’s original use case.”

Construction elements

According to Build Change, the project encourages new users to contribute and to deploy the software in new environments around the world. Priorities for short term updates include improvements in user interface, contributions to the image dataset for different construction elements, and support to automatically detect if the perspective of an image is flawed.

Build Change seeks to help save lives in earthquakes and windstorms. Its mission is to prevent housing loss caused by disasters by transforming the systems that regulate, finance, build, and improve houses around the world.

What Is the Internet of Taxes?

What Is the Internet of Taxes?

What Is the Internet of Taxes? A question answered by Toby Bargar in his article dated May 13, 2021, explains how in this day and age, the Internet generally is gradually spreading wider and wider to cover most daily life. But to this extent, who would have thought so?

So, let us see what it is all about.

What Is the Internet of Taxes?

According to a McKinsey Global Institute report, IoT could have an annual economic impact of $3.9 trillion to $11.1 trillion by 2025. Adoption is accelerating across several settings, including factories, retailers, and even the human body. In fact, smart cities will reportedly create business opportunities worth $2.46 trillion by 2025, and by 2030 more than 70% of global smart city, spending will be from the United States, Western Europe, and China. With AI and the rollout of 5G facilitating faster speeds and scalability, we will see even greater demand across sectors for IoT solutions.

The ability to tax IoT may require changing laws and regulations. As we continue to adopt smart solutions, companies have to get smart about the nuances and risks of IoT taxability.

Click To Tweet

An oft-repeated phrase says that nothing is certain but death and taxes; however, in the case of IoT, we can say that nothing is certain but growth and taxes – we don’t yet know how it’s all going to shake out. The demand for IoT is going to tempt federal, state, and local jurisdictions to tax it. With voice communications taxable revenues declining, taxing IoT is an attractive option to replenish their coffers.

In 1998, Congress passed a moratorium banning state and local governments from taxing internet access. This ban was extended several times. The Permanent Internet Tax Freedom Act (PITFA) converted the moratorium to a permanent ban and was fully implemented nationwide on July 1, 2020. Since the initial moratorium, the internet has risen to be a critical communication tool over other more highly taxed wireless and landline voice options, which continue a steady decline.

The ability to tax IoT may require changing laws and regulations. This process could take some time, but there is a complicated web of laws, regulations, and tax liabilities surrounding IoT in the interim. As we continue to adopt smart solutions, companies have to get smart about the nuances and risks of IoT taxability.

There are two easy questions that will help you to begin to understand your IoT taxability risk.

1) Is your company selling internet access?
2) Is your connectivity embedded or over-the-top?

Over-the-Top or Embedded Connectivity

If your device is networked over a user-supplied connection, then access is over-the-top or bring-your-own Internet connectivity. The over-the-top connection can be wired, Wi-Fi, or purchased separately from a wireless service. For example, if you sell a wireless printer, users connect through their home or office network. You are not supplying the internet, but the device. In these cases, as an IoT device maker, you likely have no responsibility for the customer’s internet connection.

Different than over-the-top, an embedded connection is part of the device. If you sell a device that comes with its own data connection as a component of the sale or service plan, it is embedded. Smartphones are a great example of an embedded connection. The relationships between device makers and network operators can feature widely variable structures. The device provider may need to account for any taxes that need to be collected related to the connection.

The World Wide Web of Gray

Defining internet access may appear intuitive, but not all connectivity is considered internet access. If you are selling a service that meets the statutory definitions of ISP service, the federal law provides a moratorium against state and local taxes.

Private connectivity, however, is often taxable. Unlike the public internet, private connectivity occurs via a Local Area Network (LAN) or Wide Area Network (WAN). This type of access is considered a taxable communication service in most states. If the network is interstate, this will also subject you to the Federal Universal Service Fund fee (FUSF), which is currently 33.4%, an all-time high for this fee and growing higher every quarter.

However, there are questions about whether connections to devices that do not enable a WWW experience – you connect to the internet, but the end-user can’t log onto Facebook or perform a Google search – meet the federal definitions of ISP service. If you do not meet those definitions, then your likely tax destination could be LAN/WAN.

Avoid the Dead Zone

IoT is here to stay. As you develop and deploy IoT solutions, it will be critical to stay informed on the web of tax rules that may or may not apply to your business. Monitor federal and state agencies that have jurisdiction over internet taxation and stay abreast of any changes on the horizon.

With so much uncertainty, it can be tempting to push the envelope, but a conservative interpretation of tax guidance can proactively protect you from being caught off guard.

Finally, to avoid hitting a dead zone, don’t try to navigate the changes on your own. Consult with your tax and legal advisors to ensure that you are aware of the latest developments and plan your course of action accordingly.

How will the technology revolution of Construction 4.0 impact people?

How will the technology revolution of Construction 4.0 impact people?

A New Civil Engineer‘s article by Fred SHERRATT tries to answer How will the technology revolution of Construction 4.0 impact people?’ Preceding these excerpts and highlights through our bolds with all due respect for all involved are our thoughts.

The debate about the digital transformation of the construction industry in its different markets across, for instance, the MENA region, has been well surveyed on projects through the role of technology in shaping the next phase of development.

The impact of digitalisation in the region’s construction will encompass a radical change in all sectors. Such sectors as electricity and transport, particularly road construction, are naturally, as it were, prone to be digitally handled through automation with a certain ease. According to many observers, the building industry though being, as it were, more vernacular in its diversity and composition, would require still lots of digital innovation and eventually be a crucial driver of future growth in the construction industry. Collected data on what digitisation means for the construction industry to be spent on in the MENA region illustrates well over the recent past. Most concerns are for those countries of the Gulf whether the future’s Construction sites will be people-free’ for obvious reasons and the opposite for the rest of the MENA region.

The picture above is for illustration and is of The Fourth Industrial Revolution by Ahmad Sufian Bayram.


How will the technology revolution of Construction 4.0 impact people?
Fred Sherratt is the interim deputy dean for research and innovation in the Faculty of Science and Engineering at Anglia Ruskin University

How will the technology revolution of Construction 4.0 impact people?

Welcome to the Fourth Industrial Revolution! Under Construction 4.0 robots lay bricks and drones carry out surveys. Improved connectivity and data management means AI and machine learning can plan projects better than humans ever could. Building information modelling (BIM) has blossomed, projects completed in the virtual world before ground is even broken. Computer controlled craftsmanship optimises design, whilst the Internet of Things enables the use of real-time data processing and digital twins to optimise delivery on site.

Fred Sherratt is the interim deputy dean for research and innovation in the Faculty of Science and Engineering at Anglia Ruskin University

And for an industry told to Modernise or Die this could not have come at a better time.

Construction 4.0 promises increased efficiencies, enhanced and optimised productivity. Not to mention savings of time and money through reductions of labour, material and processing costs. This is trumpeted across the industry through voices heavy with technological optimism, industrial progress, all the benefits and rewards this revolution will bring, as well as scare stories for those not getting on board now – you’ll be left behind if you miss the boat!

But maybe we should think a little more critically about this. Because we have been here before. Three times to be precise.

And, it hasn’t always gone well. Not least because technology is not neutral, as Jacque Ellul argued in 1954. The underlying rational and objective methods that drive its implementation also instil within it an autonomy and amorality that is potentially dangerous. People and industries are compelled to adapt to technological change – as who but a Luddite would challenge all the promises it brings? – but such change is not always positive. History shows that technology can fundamentally disrupt the ways industries are structured and operate: workers are not just replaced by robots, things change so much neither robots or people are needed at all. So just because we can, doesn’t mean we should, and certainly not without careful deliberation.

Our industry contributes significantly to UK employment, including many site workers who’ve struggled with formal education whilst their myriad practical skills have long been devalued. For them, Construction 4.0 presents a positive narrative of “reskilling” or “multi-skilled” workers, but history suggests a downgrading of both job roles and earning potential is actually much more likely. Technological advancements tend to reduce labour requirements overall and also split skilled roles into two: new tasks only requiring one degree-qualified manager and some unskilled labour, with reduced quality of work and thus less remuneration. Estimates suggest 50% of traditional construction work could be automated over the next 20 years, making this a significant concern. But Construction 4.0 doesn’t care, the amorality technology brings to progress creates a convenient myopia for social consequences such as this. Any reduction in the numbers of people employed or their potential earnings is beneficial – a reduction in wage costs, hurrah! It’s just a shame about the jobs, and the satisfaction people used to be able to realise from skilled manual work.

And it is not just site workers who are vulnerable to such “progress”. Engineers have already seen their work shift into the virtual, where they now sit in front of screens to design and provide information to control and guide subcontractors. Their work is now shaped and structured by new technologies which require specialist skills for operation, and which also created new roles that potentially undermine professional autonomy. Whilst professionals were upskilling themselves, “BIM managers” took charge of the design process as a whole, because they were best able to navigate and negotiate the software, not because they were best skilled to lead design development or coordination. Although things have rebalanced as training caught up, professionals across our industry are now forced into ways of working as the technology dictates, choice is no longer an option.

Indeed, the “technology owner” may even become the dominant industry professional in the future, through the autonomy unquestionably conferred on them. Indeed, Cui bono [who will benefit] is never a bad question to ask, particularly in a US$10bn global construction software marketplace. Software vendors promise solutions to all manner of construction process inefficiencies, but in doing so they are also redesigning industry structures to fit their technologies. But the confidence (arrogance), that technology developers can capture (and inevitably improve) what we do is never challenged: they are now gurus to the industry, with little sense of history, craft or profession. The consequences of this dominance could be considerable: a built environment constructed to meet the dictates of technology, rather than the manifestation of the imagination, fun, creativity and humanity of a real person. Are we happy about that?

We should therefore consider carefully whose agendas Construction 4.0 is serving. Our industry does more than simply create our built environment, it also employs vast numbers of people who gain both income and self-validation from this process. Construction 4.0 is challenging how we do things, disrupting us, bringing progress at last to our dinosaur of an industry. But who is challenging Construction 4.0? Luckily it’s all still relatively piecemeal, smoke and mirrors are plentiful, and we are not (yet) at the point of no return. But it’s up to professionals to point out that Construction 4.0 has the potential to do harm as well as good. We should all think a little more critically before we add our voices to the current tsunami of technological optimism. It’s a common trope of our industry that people are our biggest asset. Why don’t we try to keep it that way?

  • Fred Sherratt is the interim deputy dean for research and innovation in the Faculty of Science and Engineering at Anglia Ruskin University
Debunking Construction Integration Technology Myths

Debunking Construction Integration Technology Myths

Advanced Project Management & System Integration Project Management & System Integration elaborated on the current trends in the construction industry concerning its necessary but vital digitalisation. They came up with what is so apparent, i.e. deconstruct that heavy concrete slab of traditions and day-to-day routines that weighs on the industry. It is all about debunking Construction integration technology myths because Digital integration would otherwise be inefficient.

March 26, 2021

Few construction industry leaders would say they oppose data integration. Most acknowledge that combining different data types and formats into a central location allows access to complete, current and accurate information to help them make fact-based decisions instead of acting on hunches. So why doesn’t every engineering and construction (E&C) firm have a warehouse of integrated data? The culprit is often misinformation created by myths about data integration. We will debunk three of the biggest myths about costs, downtime, and complexity below.


Myth #1: Data integration cannot be achieved without high costs

This myth was once true, and some vendors still do quote integration approaches that are not feasible for many E&C firm budgets. But today, integration solutions once available only to enterprises atop the ENR 500 are now available to small and mid-sized firms. Recent breakthroughs in virtualization, iPaaS, and cloud computing have contributed to their lower costs and broader availability.

Virtualization

As defined by Tech Target, data virtualization is an approach to data management that allows an application to retrieve and manipulate data without requiring technical details, like data format or its physical location. As this technology has matured, it has driven total integration costs down.

Integration Platform as a Solution (iPaaS)

Gartner defines iPaaS as a suite of cloud services enabling development, execution, and governance of integration flows connecting any combination of on-prem and cloud-based processes, services, applications, and data within individual or across multiple organizations.

iPaaS is ideal for E&C firms. Collaborating and sharing information across multidisciplinary teams including owners, architects, consultants, engineers, contractors, subcontractors, and suppliers using different systems is the cornerstone of E&C work.

Construction organizations typically collaborate with teams across multiple cloud platforms, so when considering iPaaS, look for a cloud-agnostic solution. Some solutions offer packages with varying costs based on the number and/or complexity of flows (data sources) needed. Custom email alerts may also prove helpful, for example, if an error occurs or if a batch is completed.

Cloud Computing

Collecting servers in a single room or rack is no longer necessary. Geographic isolation of data sources is actually a business continuity / disaster recovery best practice. Amazon Web Services, Microsoft Azure, and Google Cloud were growing in popularity even prior to the COVID-19 pandemic. The sharp increase of remote work and video conferencing accelerated their growth.

E&C firms are deploying more hybrid-cloud and multi-cloud arrangements. Essentially, hybrid cloud refers to the combination of private and public cloud infrastructure, and some or many from an organization’s own data center. Multi-cloud configurations use multiple cloud providers to meet different technical or business requirements. The reason cloud computing, sometimes referred to as infrastructure as a service (IaaS), is so popular is that it allows for fast scalability, broad availability, and low total cost of ownership vs. managing everything in company-owned data centers.


Myth #2: Data integration requires significant downtime

Even during off-peak times, E&C firms want to avoid downtime. Today’s data integration solutions offer rapid time to value with development-cycle times reduced by as much as 33%. Some solutions may be able to eliminate workday downtime with only brief downtime on evenings and weekends.

Containerization, enabling developers to create predictable environments isolated from other applications, is also used by some solutions. With containerization, consistency is guaranteed regardless of where an application is deployed. Containers only use about 60 lines of code so they can be developed and deployed quickly to minimize downtime.


Myth #3: Managing a data warehouse is complicated

What is involved with keeping a data integration platform running?

The short answer is that it depends, but there are solutions that do not require a high degree of information technology (IT) overhead. Look for solutions that include intuitive dashboards to monitor and troubleshoot integrations, the ability to quickly review flows, rerun flows on demand, or view error details, if any.

If using iPaaS, consider a solution that includes a dedicated client-success (CS) manager. The CS manager puts an iPaaS subject-matter expert on your company team, instantly adding value while eliminating the learning curve for an existing team member to become proficient. And unlike a consulting relationship where the expert stays for a while to train your team but then leaves, a client-success manager is always available to create or troubleshoot flows.

Today’s construction and engineering world requires unprecedented external collaboration, with multiple parties outside your organization at every building, site, and external site. The mobile information, in turn, reduces data centralization, creating a greater urgency to adopt a data integration solution.

Want to learn more? Gaea Global Technologies, Inc. has decades of experience with construction and engineering solutions. Nexus, Gaea’s integration-platform-as-a-service (iPaaS) solution, was designed to automate construction processes across applications.

To learn more, visit https://nexus-platform.com/.

3 Reasons Construction Companies Need to Digitally Transform Now

3 Reasons Construction Companies Need to Digitally Transform Now

FORConstructionPROS explains how 3 Reasons Construction Companies Need to Digitally Transform Now.

As the pandemic continues to change the way businesses run, construction companies have begun to realize the importance of going digital. It is by Tom Stemm of Ryvit.

The need for digitization in construction has been made clear by the pandemic and by other industries that have successfully overcome their operational challenges through the introduction of digital products and services.

Digital transformation has been a key area of investment for businesses over the past decade and is expected to only continue. Even with the pandemic wreaking havoc on business spending worldwide, overall digital transformation spending was still forecasted to increase by 10% in 2020.

The construction industry has lagged behind other industries in this respect, being notoriously reliant on outdated technology and operating in deeply entrenched business silos. Despite this, there is still progress. The pandemic forced companies to innovate, and construction businesses that introduced safety and communication technologies are highly likely to keep them once the pandemic is over. It’s clear technology will continue to play a major role in transforming safety, communications and operations. 

Covid 19 Changes Here To Stay ProcoreProcore

How the Pandemic Increased the Need for Efficiency

Prior to COVID-19, construction companies were experiencing high demand and increasing revenues, despite their slow adoption of new technologies and a lack of digital maturity. Once the pandemic hit, this changed rapidly. The construction industry lost a total of $60.9 billion in GDP in the U.S. alone, with an estimated reduction to 6.5 million jobs, down from 7.64 million since February 2020. 

Furthermore, inefficient on-site workflows that relied on paper trails and outdated communication methods became even more difficult to work with once social distancing measures were implemented. As a result, businesses have been forced to look for digital solutions that can unlock new operational efficiencies and enable service delivery with reduced manpower. 

Why are Construction Companies Struggling to Innovate?

The need for digitization in construction has been made clear by the pandemic and by other industries that have successfully overcome their operational challenges through the introduction of digital products and services. Construction companies, however, often work on projects with extremely different requirements. The processes and systems that are in place for one project have to be coordinated with a variety of contractors, subcontractors, suppliers, and business divisions. These projects are often one-offs and are rarely replicated. Consequently, business leaders who might be enthusiastic about digital transformation might be unsure how to go about achieving it. 

3 Reasons Construction Companies Need to Digitally Transform Now

The gap between field and office workers is growing 

Construction operations have always been broken down into individually operating business divisions, and slower collaboration between divisions has caused a significant increase in lead time. The enforced necessity of remote work has only made communication between teams a greater challenge. 

Between offices, remote workers, contractors and suppliers, any on-site observations made regarding material quality, for instance, have to go through several communication channels before new materials can be procured. This communication chain can cause great confusion, delay delivery time and create animosity between contractors and employees. 

The introduction of a unified communication channel allows construction teams to increase collaboration, aligning the different stakeholders on the requirements and schedules of each project. A digital solution also allows communication to occur in real time. Many on-site employees still use physical paper forms to take notes while inspecting the site and communicating the information on the form can take time. An integrated communications platform keeps everyone up to date and reduces the time it takes for key information to cross business divisions.

Productivity and effectiveness are key to delivering results

Construction businesses tend to be entrenched in outdated processes that limit productivity. McKinsey reported that productivity growth in the construction industry has increased a mere 1% a year over the last 20 years. This lags behind counterparts in other industries, who are increasing productivity at almost three times the rate. This inefficiency is estimated to cost the global economy $1.6 trillion a year. 

Construction Productivity Costs Mckinley

With the demand for construction services increasing rapidly and the construction workforce aging to a large extent, efficiency and improved productivity can be the difference between an overwhelmed workforce and a satisfied clientele. McKinsey found that firms that introduced digital systems for procurement, supply-chain management, better on-site operations and increased automation had improved productivity 50% over firms that relied on analog solutions. 

Through the use of technologies such as AI, IoT and VR, construction businesses can modernize each stage of their operations from planning to execution. This reduces the amount of time spent revising designs, seeking approvals and calculating the resources needed for any changes in the project. 

There is an increased focus on health and safety

The pandemic has caused many people to pay more attention to health and safety standards in all types of workplaces. For construction businesses, this focus on safety and health is not new. Despite its efforts, according to the U.S. Bureau of Labor Statistics, the construction industry has one of the highest fatality rates, with 9.5 fatalities per 100,000 full-time equivalent workers. Construction companies are under pressure to minimize construction accidents by improving on-site safety and protection guidelines, and provide improved support to workers who need it. 

The introduction of technologies such as exoskeletons, AR glasses and wearable monitoring devices has made achieving higher safety standards possible. When technology works in tandem with production, it can increase on-site safety standards by reducing human error and improving response in case of an adverse event. When this technology is integrated, business leaders also have a holistic view of their operation and can identify potential safety problems early. 

Businesses and industries that transformed themselves early have displayed the benefits of adopting modern applications and systems. Technology has made improving safety standards, appealing to a new generation of workers and increasing operational efficiency, more achievable than ever before. Construction companies must transform and now is the time.