+44 01483 457477 farolaz@hotmail.co.uk

Arab Narratives About Artificial Intelligence Are Explored

Advertisements

Al-Fanar Media elaborates on a report where the so-called Arab narratives, about Artificial Intelligence, are explored. AI is also predicted, it could change the MENA region more profoundly than anything else before. How would that happen?
Is it through using a wide-ranging branch of computer science concerned with building intelligent machines capable of performing tasks that typically require human beings’ brains?
Or is it just another way of procuring the ability of a computer or computer-controlled or robot to perform tasks commonly associated with intelligent beings? Or put another way, is it needed to cover humans’ unpredictable performance by a more stable and well-controlled machine?

But what are Arab narratives?

The MENA region is culturally dominated by the Arab ethnocultural authoritarianism in the current socio-political systems and finds it difficult to get their respective populations to come up with some added value in any domain.

They might, though, have some success with the AI. Let us see.

The picture above is for illustration.

Arab Narratives About Artificial Intelligence Are Explored in New Report

By Tarek Abd El-Galil 

CAIRO—The Middle East and North Africa region needs to be more involved in the global debate about the development of artificial intelligence-related technology, says a new report that examines the narratives about technological futures that are widespread in the Arab world.

Narratives about future uses of robots and intelligent machines—how a culture portrays them in areas including history, literature, art and films—can influence the development and reception of artificial intelligence (AI), says the report. Yet Western perspectives typically dominate AI discussions, it says, and Arab perspectives are largely missing.

The authors examine the ideas about artificial intelligence that are prevalent in the Arab world and seek to bring them into the wider debate (Image: Pixabay).

Titled “Imagining a Future With Artificial Machines: A Middle Eastern and North African Perspective,” the report was issued earlier this month by the Access to Knowledge for Development Center at the American University in Cairo’s School of Business and the Leverhulme Centre for the Future of Artificial Intelligence at the University of Cambridge.

It notes the MENA region’s rich history and culture and the ability of its youth to employ technology as a means of expression, by presenting  literary works based on science fiction or by their economic participation in technology-based start-ups, which can help create new business models suitable for the future and contribute to providing job opportunities in an area where young people make up a large majority of the population

Joining the Global Dialogue

“The region might not be rich in technology compared to developed countries,” said Nagla Rizk, a professor of economics and founding director of the Access to Knowledge for Development Center, who is a co-author of the report. “However,” she added, “it has a rich stock of culture and history that manifests in technological narratives in different ways.”

“Our participation in this initiative was an excellent opportunity to include the voice of our Arab region in the global dialogue platform on artificial intelligence narratives.”

Nagla Rizk  A professor of economics and founding director of the Ac cess to Knowledge for Development Center

The report comes as part of the Global Artificial Intelligence Narratives Project, an initiative within the Leverhulme Centre to build a network of experts around the world to analyze different cultures’ perceptions of the risks and benefits of AI. The initiative holds a series of workshops outside the English-speaking world, with local multidisciplinary groups of researchers and practitioners from fields related to AI narratives, such as science fiction, scientists, artists, AI researchers, philosophers, writers and anthropologists.

“Our participation in this initiative was an excellent opportunity to include the voice of our Arab region in the global dialogue platform on artificial intelligence narratives,” Rizk said.

She noted that because modern technology, especially artificial intelligence, is usually developed in technologically advanced countries in response to the needs and aspirations of their people and in a way that expresses their cultures, this can result in a kind of inequality, given that the rest of the world does not share those countries’ needs in developing this technology.

Not a Technology ‘Desert’

The report refutes the common notion that the MENA region is a technology “desert” devoid of ideas and the real development of technology. It reveals the existence of rich, rapidly growing technological oases that mix the influence of Western, Eastern and local cultures, and have their own independent character. (See the related articles “Genetics and Artificial Intelligence Drive Qatar University’s Covid-19 Research” and “Arab Researchers Use Artificial Intelligence in Bid to Thwart Fake News.”)

For example, technological development is being pushed at breakneck speed by the governments in the United Arab Emirates and Qatar, as well as in less affluent countries such as Egypt, Jordan and Tunisia. Such initiatives are often influenced by Western models, in contrast with the current grass-roots efforts and start-ups, which usually rely on simple technologies and local techniques that reflect the concepts of individuals.

“Stories about AI that are grounded in the realities of people living in the Middle East are the best way to explore local visions of the future using smart machines.”

Tomasz Hollanek  A media and technology researcher at the University of Cambridge and a student fellow at the Leverhulme Centre

“Stories about AI that are grounded in the realities of people living in the Middle East are the best way to explore local visions of the future using smart machines,” said Tomasz Hollanek, a media and technology researcher at the University of Cambridge and a student fellow at the Leverhulme Centre. Hollanek, who is also one of the report’s authors, believes it is important for these visions to reflect the aspirations and needs of the region’s people, rather than importing ideas from elsewhere, particularly from the English-speaking West.

Fear of Reinforcing Stereotypes 

The report expresses concerns that some narratives about artificial intelligence in the region will reinforce gender stereotypes in the future. It cites an example from a popular Egyptian comedy skit from the 1980s, in which a female robot named “Ruby” appears as a domestic servant who responds to orders from the play’s main male character.

In contrast, “Ibn Sina,” the first Arabic-speaking robot, created in the U.A.E., is anthropomorphized as male and is not a servant. Named after a famous 11th-century philosopher, physician and poet, the robot symbolizes the region’s scientific heritage and reflects strength and wisdom, the main traits of masculinity in patriarchal societies.

Another local example is a robot named “Zaki”—which means “smart” in Arabic.  Zaki is a chatbot used in an Internet banking platform in Egypt, and thus reflects men’s control of the financial sector, the report says.

Hollanek points out that narratives can have a direct impact on how technologies are conceived and developed. For example, the representation of certain groups on screen can have a realistic effect on who performs certain jobs: the more female AI researchers appear in films and TV series, the more likely young, ambitious women will pursue a career in AI research.

“We hope for a better reality and future for Arab women, away from stereotypes, which will naturally be reflected in their portrayal in technological narratives,” said Rizk.

Obstacles and Opportunities

“We just need to be able to discover talented people and properly employ them to build a base for technology development.”

Mohamed Zahran  A professor of computer science at New York University

According to Hollanek, the report reveals how post-colonial perspectives—both in the region and among MENA citizens and beyond—continue to significantly influence perceptions of the Arab region’s potential for full realization of the benefits of AI. That’s why he says it’s important to imagine a future with intelligent machines as a decolonial activity, as a way to resist the Western ideas of “progress” or “development.”

Mohamed Zahran, a professor of computer science at New York University, believes there are obstacles facing the region’s acceptance of the development of artificial intelligence. These include the fear that robots will take people’s jobs, and the fear of Western dominance in the technology market; fears the report also highlighted.

However, Zahran agrees with the report’s authors that the region will be able to overcome these obstacles, with its capabilities, talents, and emerging artificial intelligence start-ups, in addition to the ability to rent supercomputers that are now available.

While technology is Western, Zahran said, the report draws the world’s attention to the Middle East and what it can contribute to developing the future of artificial intelligence. “We just need to be able to discover talented people and properly employ them to build a base for technology development,” he said.

What Is the Internet of Taxes?

Advertisements

What Is the Internet of Taxes? A question answered by Toby Bargar in his article dated May 13, 2021, explains how in this day and age, the Internet generally is gradually spreading wider and wider to cover most daily life. But to this extent, who would have thought so?

So, let us see what it is all about.

What Is the Internet of Taxes?

According to a McKinsey Global Institute report, IoT could have an annual economic impact of $3.9 trillion to $11.1 trillion by 2025. Adoption is accelerating across several settings, including factories, retailers, and even the human body. In fact, smart cities will reportedly create business opportunities worth $2.46 trillion by 2025, and by 2030 more than 70% of global smart city, spending will be from the United States, Western Europe, and China. With AI and the rollout of 5G facilitating faster speeds and scalability, we will see even greater demand across sectors for IoT solutions.

The ability to tax IoT may require changing laws and regulations. As we continue to adopt smart solutions, companies have to get smart about the nuances and risks of IoT taxability.

Click To Tweet

An oft-repeated phrase says that nothing is certain but death and taxes; however, in the case of IoT, we can say that nothing is certain but growth and taxes – we don’t yet know how it’s all going to shake out. The demand for IoT is going to tempt federal, state, and local jurisdictions to tax it. With voice communications taxable revenues declining, taxing IoT is an attractive option to replenish their coffers.

In 1998, Congress passed a moratorium banning state and local governments from taxing internet access. This ban was extended several times. The Permanent Internet Tax Freedom Act (PITFA) converted the moratorium to a permanent ban and was fully implemented nationwide on July 1, 2020. Since the initial moratorium, the internet has risen to be a critical communication tool over other more highly taxed wireless and landline voice options, which continue a steady decline.

The ability to tax IoT may require changing laws and regulations. This process could take some time, but there is a complicated web of laws, regulations, and tax liabilities surrounding IoT in the interim. As we continue to adopt smart solutions, companies have to get smart about the nuances and risks of IoT taxability.

There are two easy questions that will help you to begin to understand your IoT taxability risk.

1) Is your company selling internet access?
2) Is your connectivity embedded or over-the-top?

Over-the-Top or Embedded Connectivity

If your device is networked over a user-supplied connection, then access is over-the-top or bring-your-own Internet connectivity. The over-the-top connection can be wired, Wi-Fi, or purchased separately from a wireless service. For example, if you sell a wireless printer, users connect through their home or office network. You are not supplying the internet, but the device. In these cases, as an IoT device maker, you likely have no responsibility for the customer’s internet connection.

Different than over-the-top, an embedded connection is part of the device. If you sell a device that comes with its own data connection as a component of the sale or service plan, it is embedded. Smartphones are a great example of an embedded connection. The relationships between device makers and network operators can feature widely variable structures. The device provider may need to account for any taxes that need to be collected related to the connection.

The World Wide Web of Gray

Defining internet access may appear intuitive, but not all connectivity is considered internet access. If you are selling a service that meets the statutory definitions of ISP service, the federal law provides a moratorium against state and local taxes.

Private connectivity, however, is often taxable. Unlike the public internet, private connectivity occurs via a Local Area Network (LAN) or Wide Area Network (WAN). This type of access is considered a taxable communication service in most states. If the network is interstate, this will also subject you to the Federal Universal Service Fund fee (FUSF), which is currently 33.4%, an all-time high for this fee and growing higher every quarter.

However, there are questions about whether connections to devices that do not enable a WWW experience – you connect to the internet, but the end-user can’t log onto Facebook or perform a Google search – meet the federal definitions of ISP service. If you do not meet those definitions, then your likely tax destination could be LAN/WAN.

Avoid the Dead Zone

IoT is here to stay. As you develop and deploy IoT solutions, it will be critical to stay informed on the web of tax rules that may or may not apply to your business. Monitor federal and state agencies that have jurisdiction over internet taxation and stay abreast of any changes on the horizon.

With so much uncertainty, it can be tempting to push the envelope, but a conservative interpretation of tax guidance can proactively protect you from being caught off guard.

Finally, to avoid hitting a dead zone, don’t try to navigate the changes on your own. Consult with your tax and legal advisors to ensure that you are aware of the latest developments and plan your course of action accordingly.

IoT Growth in Cities Accelerated by COVID-19sMART

Advertisements

An ESI ThoughtLab report on sustainable development goals in 167 cities, representing nearly 7 percent of the world’s population, found that the coronavirus has accelerated technology growth worldwide as planners, administrators and businesses consider the post-pandemic realities of urban centers. Claire Swedberg explains why and how IoT Growth in Cities was Accelerated by COVID-19.

Global Study Shows IoT Growth in Cities Accelerated by COVID-19

By Claire Swedberg

Analytics company  ESI ThoughtLab (ESITL) has found that technology, including Internet of Things (IoT) solutions, is at the forefront as municipalities plan their COVID-19 pandemic recovery, along with sustainability initiatives. According to the company’s recent report, released this spring and titled “Smart City Solutions for a Riskier World,” COVID-19 served cities an unexpected stress test. The study found that cities are investing in technology-based solutions to meet sustainability development goals (SDGs) at an accelerated pace.

Lou Celi

To make that transition possible, says Lou Celi, ESI ThoughtLab’s CEO, a dual effort needs to be made to ensure citizen support and cybersecurity for IoT rollouts. ESITL collaborated with a coalition of businesses, government agencies and academics to conduct the overarching research, which explored 167 cities in 82 countries on all continents, representing 526 million residents (6.8 percent of the world’s population). The organization studied and interviewed cities to learn about their SDG efforts, including their existing and planned use of IoT and other smart technologies.

The project, which launched in early 2020, took approximately a year to complete. This was accomplished during the pandemic, and tracking will continue going forward in order to compare data following the outbreak. The IoT plays a part in the study, with the researchers examining the intersection of technology and sustainability goals. “It was a real watershed study,” Celi says, and cities were found to be already well invested in SDG and smart-city solutions, with most seeking to accelerate their adoption.

The study focused on urban rather than rural areas. “More than half of the world lives in cities, and that’s where social and environmental issues require the most attention,” Celi says. The research team’s survey used a scoring methodology that allowed them to categorize cities by their progress against the United Nations’ 17 SDGs. Cities were categorized in three stages of SDG progress—implementers that were still in the early stages, advancers that were making progress, and sprinters that have made the most progress on SDGs—and about 22 percent of the cities studied were sprinters.

When gathering information, ESITL collected quality-of-life data from such sources as the  World Bank,  Numbeo, Spain’s  University of Navarra and the  IESE Business School. The organization also conducted interviews with urban leaders and experts. “To identify best practices and provide case studies, we had in-depth discussions with government decision-makers and business leaders in smart cities around the world,” Celi states. ESITL established a multi-disciplinary advisory board to review the results, which consisted of city leaders, corporate executives and academic experts.

The study found that while IoT and other technologies are already being adopted to meet SDGs, COVID-19 has punched the gas pedal, with 65 percent of cities interviewed indicating that the biggest lesson they learned during the pandemic was how crucial smart-city programs are for their future. “One thing that’s very clear is that the pandemic has led us into an undeniably digital-first world,” Celi states, adding, “We knew the digital economy was coming, just not this soon.”

Smart-city solutions already yield sensor data that drives intelligence, Celi says, ranging from traffic control to air-quality measurements and infrastructure management. Now, he reports, “Cities are upping the ante. They are adopting transformative technologies, the exponential ones like IoT, blockchain and AI [artificial intelligence], as they try to harness data.” The cities that are most advanced in the use of smart technologies and are achieving the most progress in meeting their SDGs are those described as Cities 4.0, which are gearing up for the Fourth Industrial Revolution.

Such cities are advanced in using smart technologies and data to drive their social, environmental and economic agenda. Some examples, the survey found, include Athens, Helsinki, Moscow, Philadelphia and Tallinn. All 20 of the 4.0 cities have made large investments in IoT and cloud-based technologies, while 84 percent said they are currently making large investments in the IoT. On average, the study found, cities currently use six types of data, including biometrics and behavioral data, and will be using seven in the next three years. Those at the forefront of adoption—the sprinters—are expected to increase some of the fastest growing digital technology sources to nine.

When asked if the pandemic has had a lasting impact on their planning, 69 percent of the respondents indicated they are reconsidering urban planning and the use of space. More than half (53 percent) said the pandemic has permanently changed how people live, work, socialize and travel in cities. For 36 percent, COVID-19 exposed the weaknesses in cities’ operational continuity capabilities.

“Cities have changed dramatically since the pandemic,” Celi says, “and we’re not going back. They’re going to be using technology to reposition their cities and their focus is going to be on SDGs.” Additionally, 65 percent of respondents reported that the pandemic has demonstrated how crucial smart-city programs are for a city’s future. “Cities’ use of the IoT, from interconnected devices, is already very high, but it will be growing even faster and converge with other digital technologies, such as cloud, 5G and edge computing.”

According to the study’s results, two key challenges must be considered as technology expands in cities: public investment and security. As technology is adopted, Celi states, “It must be done in a smart way for security, and with citizens onboard.” With regard to security, 60 percent of cities indicated they still have cybersecurity vulnerabilities with their technology deployments. Smaller cities are the least secure, he notes, with only 29 percent reporting that they are well-secured against cybercrime.

“We found cybersecurity was a very big issue,” Celi states. “IoT raises a lot of digital risk.” Bad actors could do damage with cyberattacks, he explains, and the incidence of such attacks rose by about 50 percent during the pandemic. “The lesson is that cybersecurity should not be an afterthought. It should be something adopted initially.”

According to Celi, the most successful deployments were those from which the public gained benefits, while also reducing concerns about privacy. Already, the use of technology during the pandemic has lowered the level of privacy worries as citizens grow accustomed to having more technology in their lives to solve common problems. Based on the survey results, he says, the public’s data-privacy concerns have yielded to the realization in the past year that digital solutions can improve safety and lifestyle. Still, he adds, without a concerted effort to include the public in technology deployments, privacy concerns can result, leading to mistrust.

Cities with high levels of citizen participation tend to be those with stronger communities and more empowered citizens, the study indicated. Those deemed sprinters used a variety of techniques to bring the public onboard, such as ensuring that disadvantaged populations were included in technology capture and use, as well as providing gamification and incentives. City employees need to be brought into the decision-making process as well, the research found, in order to make technology adoption successful and inclusive. Other potential headwinds ahead for SDG efforts may include regulations, finding the right partners and keeping pace with technology changes.

Going forward, Celi says, “Our big push is going to be ‘What’s next?’ What everyone wants to know is, ‘What’s Main Street going to look like in three years?'” ESITL plans to continue researching the SDG progress and technology use of cities as the pandemic ends. He offers some predictions in the meantime: Remote work will continue, he says, and that affects cities in numerous ways, ranging from transportation to the environment. “One of the lessons learned from the pandemic was that there are ways to run a city with less of a carbon footprint.” As COVID-19 eases, he adds, “I think there’s more of a social awareness that we have to be better at keeping people and the planet healthy and safe.”

The study found that cities have been making strides in meeting their SDG goals. “I wasn’t expecting that so many cities were already embracing SDGs,” Celi admits. “But I was happy to see the correlation between technology and the SDGs.” As efforts build to meet sustainability demands, the research indicated that the most successful deployment consists of a collaborative effort. City governments benefit from working with partners ranging from businesses, associations and universities to other cities, federal agencies and multilateral organizations. “We need to work together to find the solution. And through the enlightened use of technology, we can help make the world a better place.”

Read the original document