Extreme Environments: farming in the Sahara Desert

Extreme Environments: farming in the Sahara Desert

The MENA’s Sahara region is increasingly being looked at for purposes stemming from power generation to food production. Here is how Danny Kane in this write up brings in to everyone’s attention the hot topic on Extreme Environments: farming in the Sahara Desert.


Every year, an area of fertile land roughly half the size of Britain becomes desert. This process, known as desertification, isn’t usually caused by one single factor, but the usual suspects make an appearance every time: climate change, deforestation, and poor agricultural practices. 1/5th of the world’s arable land is under threat from desertification.

With desertification likely to become an even greater issue in the future, it is time to start looking at possible ways to combat it. Reclaiming the desert is often a costly action few countries immediately affected by it can afford to pursue. The alternative, while also expensive, may be the best chance many of these countries, and in future the world, has to thrive. So, what if you could grow food in the desert?

Firstly, let’s dispel a myth — you can’t grow anything in sand. Numerous forms of plants will grow in sand, as long as they can source water and are able to tolerate the extreme heat, wind, sandstorms and occasional torrential rains found in deserts (particularly the Sahara), plants will grow. Unfortunately for us, a few wild plants cannot sustain a population, so for all intents and purposes, deserts appear to us to be barren.

Much of the problem comes from the sand itself. We’re not used to thinking about sand as a kind of soil, but it’s simply on the extreme end of the spectrum. The main issues come from two things. Sand isn’t very good at holding water, the particles are simply too big, so the water just runs off and isn’t absorbed as it is with soil, thus starving the plants of water. The second issue with sand is its lack of organic matter. Most sand is less than 1% organic matter, which is defined as organic material (plants and animal residues) in different stages of decomposition. This organic material feeds micro-organisms, which in turn create nutrients that are then utilised by the plants in their survival.

All this combined with the high temperatures, the weak structure of sand at holding roots and the high winds constantly trying to rip away the plants, make desert farming a huge challenge — but perhaps not an impossible one though.

Algeria

Extreme Environments: farming in the Sahara Desert
The Sahrawi refugee camp in Algeria

Algeria is the largest country in Africa at 2,381,740 square kilometres (919,590 square miles). Unfortunately for Algeria, around 80% of that land is in the Sahara Desert and essentially uninhabited.

Instability in the region following the Western Saharan War from 1975–1976 led to the creation of the Sahrawi Refugee camps, which today house between 90,000 and 165,000 (the exact number remains disputed by all parties involved, but the UN today recognises 90,000 individuals).

For decades, the refugees were dependent on the United Nations World Food Programme for food aid and to a large part they still are, but steps are being taken to reduce that dependence in the camps.

Here, growing plants in sand is possible thanks to hydroponics — a type of farming that grows plants in ‘inert mediums’ like packing peanuts, gravel and sand. Put simply, it is plants being farmed using nothing but water and a mineral nutrient solution. It vastly reduces the amount of water required to farm, which often has to be brought in by the literal truck load and at a high price.

The refugee camps and UNWFE have been successful in growing a strain of local barley in greenhouses, which is used as fodder to feed to the animals in the camp, noticeably increasing their dairy output, as well as the quality of the meat, and thus supplementing the diets of the refugees.

Though steps are being taken to reduce the cost, this remains relatively expensive and is far from providing enough food to support the camps. It is certainly a step in the right direction, but it’s still in its infancy.

Egypt

Extreme Environments: farming in the Sahara Desert
The Valley of the Kings from the River Nile

For a country that dared to try and tame the Sahara though, we need look no further than Egypt. At approximately 90% desert, Egyptians have always stayed close to the Nile, the life blood of the country. Evidence of agriculture in the Nile Delta has been dated to as far back as 8000 BC, so it would seem the Egyptians have already mastered the desert sands, but unfortunately the Egypt of today is very different than the Egypt of 10,000 years ago.

The population today has swelled to nearly 90 million, four times as many as in 1945. Egypt simply does not have the enough agricultural land to feed its people, and so the country that was once the breadbasket of the Roman Empire now imports 50% of its food from abroad.

The New Valley Project aimed to change that. It was one of the most ambitious construction projects ever created and has its roots in the dictatorship of Hosni Mubarak in the 1990s. It aimed to add approximately 1.5 million acres of farmland to Egypt. Following his deposition in the 2011 Arab Spring, the project was frozen, but recently it has been revived.

The project aims to deal with arguably the most difficult part of growing plants in the desert — the lack of water. The New Valley Project and other desert reclamation projects undertaken by the Egyptian government solved this by either creating an elaborate system of canals and pumping systems to syphon water from the Nile River and Lake Nasser, or by pumping up ground water from below the surface.

Extreme Environments: farming in the Sahara Desert
Toshka construction site

So, did it work? Well, not really, no. Numerous factors plagued the projects. Firstly, a vast amount of work was needed to get the shoddily constructed canals up to standard, which increased the costs of the project exponentially. Next was the issue of pumping up ground water. The vast quantities required expected to have a drastic impact on the Nubian Sandstone Aquifer, the source of the water. Essentially, it was theorised that the farming would drain the aquifer, and thus the farmland would only be productive for a limited period of time.

This coupled with the fact that despite incentives, few people want to move to one of the hottest parts of the world to work on a potentially unsustainable farm has basically rendered the project a failure. A few companies have managed to stick it out at on the New Valley Project, but these companies are few and far between. It simply isn’t possible to make a profit or produce any notable amount of food in the area.

Extreme Environments: farming in the Sahara Desert
Toshka canal

Details remain scare, but it appears the New Valley Project has been set back once more, and the term Toshka (the Egyptian name for the New Valley Project) has become a joke and a byword for failure to everyday Egyptians, seem as little more than another political stunt by the government.

UAE

Dubai, United Arab Emirates

Away from the Sahara in the UAE a more novel solution has been found — Liquid Clay. At 80% desert, the UAE faces the reality of ‘learn to grow food in the desert of rely on buying from abroad.’

However, an experimental farm working in conjunction with a Norwegian scientist has managed to half the water needed to farm by using the excitingly named Liquid Nano Clay. In essence, this clay and water solution is pumped a few metres below ground where it binds with the sand, creating fertile soil. It needs to be re-done every 5 years or so, depending on how the soil is being used, but it has been proven to reduce the water required to make the desert bloom.

Unfortunately, this seemingly miracle product comes at a very high cost, up to $9,500 (£6,900) per hectare. Desert Control, the company behind it, intends to sell their products to municipal governments and commercial growers but hopes to make it affordable to all growers in the future. The issue with this is that many of the countries within the Sahara Desert are incredibly poor, some of the poorest in the world. Even a low price may prove unattainable on the large scale needed to move these countries toward self-sustainability.

No easy answers

Extreme Environments: farming in the Sahara Desert
The Sahara Desert from space

The problem of the Sahara Desert has stubbornly refused to give way for much of human history. It has acted as a natural barrier to numerous empires like the Romans and the Carthaginians.

While you can farm in the Sahara and, in isolated cases, peoples and companies are, it remains a colossal challenge. Bringing water to the desert seems to be the greatest limiting factor to growing in the Sahara. Pumping seawater and desalinating it has been done successful in Jordan on the small scale and could potentially be re-created in the Sahara, but the scale required is nothing short of daunting and de-salination technology remains prohibitively expensive for many countries today, especially those most affected by the Sahara.

In addition, in a future where food is grown in the Sahara, it will likely be the private sector, not the governments of these places that develops the scalable technology needed for the project. Naturally, those companies are going to want a payoff for their investment and so may turn to exclusively farming cash crops. This has been seen in the New Valley Project, where one of the few companies that remains appears to exclusively grow Medjool Dates, a notable cash crop.

While obviously investments in these countries should be encouraged, farming in the Sahara should ultimately make these countries less dependent on foreign investment. If companies paid for the use of the Sahara, the governments of these countries would still be forced to use that money to buy food from aboard. If the desert can be turned into an oasis, let oasis be used for the independence of those countries, not to further a cycle of dependence that leads to nothing but instability.

Danny Kane

Why do Arabs dream of leaving their homelands?

Why do Arabs dream of leaving their homelands?

A popular question these days more than ever before would be “Why do Arabs dream of leaving their homelands?“. The answer could be something to do with their environment, climate and internet networking.


High unemployment rates, oppressive regimes and a desire for better education are some of the reasons cited by Arabs who express a desire to leave their countries.

The Arab world has seen a lot of its youth move in search of better opportunities for employment, freedom of expression, in addition to escaping from social and cultural norms they find oppressive.

According to an August 2019 poll by the Arab Barometer company, titled “Youth in the Middle East and North Africa,” the daily living situation in the region is far from ideal.

Noting that youth between the ages of 15 to 29 comprise about 30 percent of the Middle East and North Africa (MENA) countries, the Arab Barometer finds a significant number of them dissatisfied with their economic prospects.

They are also not happy with the education system. Moreover, “less than half say the right to freedom of expression is guaranteed”. Then there’s the high unemployment rates and widespread corruption.

This is why, Arab Barometer suggests, youth in the MENA region are more likely to consider emigrating from their country than older residents. The preferred destinations are varied, including Europe, North America, or the Gulf Cooperation Council (GCC) countries.

Another survey by Arab Barometer, titled “Migration in the Middle East and North Africa,” published in June 2019, notes that across the region, “roughly one-in-three citizens are considering emigrating from their homeland.”

The surveys were conducted with more than 27,000 respondents in the MENA region between September 2018 and May 2019 in face-to-face interviews.

According to the Arab Barometer’s findings, there had been a decrease in people considering emigrating from 2006 to 2016. Yet since 2016, the trend is no longer in decline but has shown an increase “across the region as a whole.”

The Arab Barometer finds that citizens are “more likely to want to leave” if they are young, well educated and male. The survey has found more than half of respondents between the ages of 18 and 29 in five of the 11 countries surveyed want to leave.

While older potential migrants are more likely to cite economic factors as the primary decision, the survey suggests, younger ones “are more likely to name corruption, for example.”

As for the desired destination countries, they vary according to the homeland of potential migrants. Among those living in the Maghreb countries of Algeria, Morocco and Tunisia, Europe is the favoured destination. 

Whereas migrants from Egypt, Yemen and Sudan point towards Gulf Cooperation Council (GCC) countries. The survey has also found that those from Jordan or Lebanon prefer North America, notably the US or Canada.

The survey also notes that while most would only depart if they had the proper paperwork, young males with lower levels of education who may not see a positive future in their homeland have said they would be willing to migrate illegally, “including roughly four-in-ten in six of the 11 countries surveyed.”

In a blog post for Unesco’s Youth Employment in the Mediterranean (YEM) published in January 2020, Sabrina Ferraz Guarino observes that “Migration is a coping mechanism based on the assumption that moving to another country is the best and most efficient investment for their own and one’s family future” and that improving people’s lives in their home countries will likely result in less desire to migrate.

Guarino says the unemployment rates in the Mediterranean region affect youth the most: “Unemployed youth are the highest in Palestine (45%), Libya (42%), Jordan (36.6%) and Tunisia (34.8%), while Morocco (21.9%) and Lebanon (17.6%) fare relatively better.”

She adds: “Viewing this together with the share of the youth that is not in education, employment or training (NEET), reveals how the challenges of youth employment remain self-compounding. The youth NEET rates tally around 14% in Lebanon and 21% for Algeria, but progressively increase across Tunisia (25%), Jordan (28%), Morocco (28%), and Palestine (33%).”

In its MENA report published in October 2019, the World Bank says growth rates across the region are rising but are still below “what is needed to create more jobs for the region’s fast-growing working-age population.” 

The World Bank recommends reforms “to demonopolise domestic markets and open up regional trade to create more export-led growth.” Source: TRT World

Related:

Egypt to lose 1000 km of sandy coasts due to erosion

Egypt to lose 1000 km of sandy coasts due to erosion

Erosion of sandy beaches will endanger wildlife, cause massive losses in coastal cities in the world. Mohammed El-Said, in his Egypt related article titled Egypt to lose 1000 km of sandy coasts due to erosion: Study is by any means not exaggerating the potential impact of climate change on Egypt. The country’s habitable space is very limited to 5 per cent. The rest of the land is uninhabitable desert. The population, therefore, concentrated around the narrow Nile Valley and Nile Delta, with some smaller numbers along the Mediterranean and the Red Sea coasts would want to preserve as much as possible of the seafront.


The world’s beaches represent an interface between land and water, and provide protection for coasts from marine storms and hurricanes, but a new study by the European Commission’s Joint Research Centre indicates that without mitigating the effects of climate change and adapting to it, half of the world’s beaches will be vulnerable to erosion by the end of the century.

Erosion of sandy beaches will endanger wildlife and may cause heavy losses in coastal cities that no longer have buffer zones to protect them from rising sea levels and severe storms. In addition, coastal erosion increases the cost of governmental measures to mitigate the effects of climate change.

In the study published last week in the journal Nature Climate Change, researchers expect erosion to destroy 36,097 km, or 13.6% of sandy coasts around the world, including the Egyptian coast, within 30 years. The situation is expected to worsen in the second half of the century as 9,561 km, equivalent to 25.7% of the world’s beaches are estimated to be eroded.

Eroding scenarios

The study provides forecasts of the shoreline’s shape between the years 2050 and 2100. It links changes in the shoreline directly to climate change based on the concentration of greenhouse gases according to the Representative Concentration Pathway (RCP) approved by the Intergovernmental Panel on Climate Change (IPCC). Thus, the study aims to calculate shoreline changes globally based on the ratio of greenhouse gases in the atmosphere.

In the latest report of the IPCC in 2019, scientists studied the greenhouse gas concentration pathway and expect that, by 2100, if countries in the world do not comply with the terms of the Paris climate agreement, average global sea levels will rise between 61 centimeters to about one meter.

Researchers relied on climate data, models, 82 years’ worth of sea level monitoring, and 35 years of beach satellite imaging. They also simulated more than 100m storms and measured their global coastal erosion.

Based on the RCP of greenhouse gases, the study assumes two scenarios for melting ice surfaces. According to the first scenario, if the world continues to emit carbon at the current rate, sea levels will rise by about 80 cm, which means the coastline will decrease by 128.1 meters, and threatens to sink 131,745 km of beaches.

According to the most optimistic scenarios, sea levels will only rise by 50 cm by 2100, and the average coastline retreat will be 86.4 meters if governments adhere to international agreements to reduce emissions and reduce carbon dependence. According to the results of the study, up to 63% of the world’s low coastal areas will be threatened by flooding due to sea level rise and severe storms.

Facing waves 

“Climate change will exacerbate the effects of coastal erosion processes, which threatens densely populated areas,” said Michalis Vousdoukas, a researcher at the European Commission’s Research Centre and lead author of the study. 

He added that in the best scenarios, Egypt will lose between 35.1% to 50.5% of its sandy beaches due to erosion, which means the erosion of about 1,000 km of Egyptian sandy beaches. The percentage is likely to be even higher in countries like Saudi Arabia and Libya.

Hisham Elsafti, a coastal engineering consultant, and instructor in coastal engineering at Braunschweig Technical University in Germany, explained that according to the study’s expectations, the coasts of the Nile Delta will retreat by more than half a kilometer at the end of the century due to geological and hydromorphological factors. 

But Jeffrey S. Kargel, a senior research scientist at the University of Arizona, believes that although the methodology of the study is good and its conclusions are valid, it did not take into account some detailed changes. These changes include the sediment supply and the increase in the production and transport of sand and silt due to the increased melting glaciers, increased surface runoff of corrosion and more sediment supply from expanded agricultural areas, increased sediment supply from dam construction, and reduced sediment transport due to dams in many parts of the world.

Kargel explained that the melting glaciers do not directly affect Egypt, but affect places like Greenland and Alaska. “Construction of dams is the most important for Egypt due to the construction of the High Dam in Aswan, and then there will be a giant reservoir for the huge dam in Ethiopia,” he said. 

He added that “when the silt is blocked by reservoirs, this will be an obstacle to the construction of the delta areas, and thus the delta will drop and seawater will submerge its coast with its cities and villages, which will represent a major problem for Egypt.” But he believes that the Egyptian Delta, despite the problems it faces, is “lucky” because it is not subject to hurricanes.

A previous study by the American Geological Society, published in May 2017, indicated that Egypt is one of the countries most affected by climate change, and that between 20 to 40 km of the coast of the Nile River Delta will be flooded with seawater by the end of the century, due to Sea level rise.

Vousdoukas added that the UK expects to lose 27.7% of its sandy beaches, according to the best estimates, and 43.7% according to worst case scenarios. Australia is also expected to be the most affected, as about 15,000 km of its beaches are at risk, followed by Canada as one of the most affected countries, then Chile, Mexico, China, and the United States. It is also expected that more than 680 million Indian citizens living in the low-lying coastal region will be affected by the coastal erosion and climate change.

Glimmer of hope 

“The study provides first-of-its-kind forecasts regarding sand beach erosion, taking into account human interventions as well as the effects of climate change and natural factors,” said Vousdoukas. The researcher explained that there is still a glimmer of hope as it can reduce greenhouse gas emissions to prevent 40% of the coastline retreat, but this requires an international commitment to the Paris Climate Agreement and related protocols, and requires some coastal protection measures to protect populated areas.

Elsafti, however, believes that Egypt should work on two main axes to avoid the negative effects of climate change and protect the beaches. The first is the effective contribution to calls to reduce greenhouse gas emissions, and asking major industrial countries responsible for the problem to contribute more effectively to solving the problem by increasing contributions in initiatives such as the Green Climate Fund, which is already participating in funding studies and work to protect Egyptian beaches.

“The second axis is a scientific axis, as Egypt must increase the funding of scientific studies that cross the disciplines required to find engineering solutions suitable for the Egyptian environment and prepare to change the planning of cities and coastal areas and their uses to adapt to the effects of climate change,” Elsafti said.

Morocco border clampdown thwarts Europe-bound migrants

Morocco border clampdown thwarts Europe-bound migrants

EURACTIV.com with AFP posted this story on how Morocco border clampdown thwarts Europe-bound migrants. It must be said that the main routes from sub-Saharan Africa are often shaped on the old ones used by caravans through the desert but of course with the help of informal local networks. Historically, and before the advent of any motor vehicle transport, there were only 2 land-based routes linking sub-Saharan with north African regions. this story is obviously about the western one that is through Morocco.


 ‎7‎ ‎February‎ ‎2020

Several sub-Saharan migrants celebrate as they wait outside of the Immigrants Temporary Center in Ceuta, Spanish enclave in northern Africa, 22 August 2018, after some 200 people managed to jump the border fence between Morocco and Spain. [EPA-EFE/JOSE M. RINCON]

Mustapha left his home in Guinea two years ago to make the arduous journey to Morocco, hoping to cross the fence separating the kingdom from the Spanish enclave of Ceuta.

“We’re going to cross this barrier,” he told AFP, in defiance of increasing pressure on migrants from Moroccan authorities, supported by Europe.

A few months ago, migrants like Mustapha were a common sight on roadsides or in camps near urban centres.

Today, those aiming to reach Europe from Morocco prefer to stay hidden, fearing the waves of arrests that have elicited condemnation from NGOs.

In recent months, European pressure to shore up borders — bolstered by funding — has pushed Morocco to clamp down on migration.

Two years after leaving Guinea, Mustapha, now 18, lives in abject poverty in a hideout in the Belyounech forest, a few kilometres from Ceuta on Morocco’s northern coast.

Cautiously, he ventures out to beg at the side of a road for a few coins, water or food, but it is rare that passing cars pay him any attention.

“My dream is to go live in Norway and be a DJ,” said the young man, wearing worn-out shoes and a black beanie, a colourful school satchel over his shoulder.

“I dropped out of high school for this trip.”

Travelling with two companions from the same neighbourhood back home, Ahmed and Omar, both 17, Mustapha took a perilous journey from Conakry, traversing Mali and Algeria, before crossing the closed border to enter Morocco.

“That part was not easy,” he said.

To reach Ceuta, the trio needs to cross the barbed wire barrier which, along with the fence around the other Spanish enclave of Melilla, mark the only land borders between Africa and Europe.

Spain returns migrants to Morocco after storming of Melilla enclave

Spain sent 55 migrants back to Morocco on Monday (22 October), a day after they forced their way into the Spanish territory of Melilla during an assault on the border in which two migrants died and 19 were injured.

‘Deportations’

The fence cuts across fields and forests, and Moroccan auxiliary force vehicles are posted along the border.

Like Mustapha, many migrants live in precarious encampments deep within forests, keeping out of sight.

Local aid groups are no longer authorised to meet with them, according to testimony gathered by AFP.

In Nador, a town bordering Melilla, the Moroccan Association of Human Rights has condemned “serious and repeated violations”, with migrants “illegally detained in very difficult conditions” and “deportations” to regions far from transit routes.

“The authorities come into the forest looking for us and, if they find us, they send us back,” Mustapha said.

“They are looking for us today even,” said his companion Omar, but added he was ready to seize “the right opportunity to get across” the fence.

A day later, Moroccan authorities announced they had blocked 400 migrants from sub-Saharan Africa from entering the Spanish enclave in an operation that resulted in injuries to both migrants and security forces.

Migrants who are detained by authorities are sent to southern Morocco by bus or returned by air to their country of origin, according to testimony collected by AFP.

Khalid Zerouali, who is in charge of migration and border monitoring at the interior ministry, told AFP that measures Morocco put in place in 2019 after sustained pressure to tackle “irregular migration” were aimed at trafficking networks.

“Our security measures do not target migrants because, in our view, they are the victims,” he said.

Morocco has led two “regularisation” campaigns since 2014, offering residency permits to 50,000 illegal migrants.

Migrants who stormed Morocco-Spain border sent back

Spain on Thursday (23 August) sent back to Morocco 116 migrants who had forced their way into the Spanish territory of Ceuta, in a mass expulsion condemned by human rights activists.

Declining arrivals

According to the European Union border security agency, Frontex, Guineans in recent years have been among the largest groups trying to reach Europe via Morocco.

“We decided to leave for a better future. We found nothing to do in Guinea,” Omar said.

Ahmed dreams of being a “professional footballer in Europe”.

“I play midfield. I want to go to Germany, if they let me in,” he said, a striped scarf around his neck to ward off the cold.

Despite the challenges, the boys say they still prefer Morocco to the Libyan route.

“There is violence there. My friends tried to get through and told me it was hard,” Ahmed said.

Like many young people seeking a better future, the trio cling to a romanticised image of life in Europe, though they seem to know little about it.

While they are just a few of the many that try to get through the barriers around Ceuta and Melilla, others attempt to reach Europe by crossing the Mediterranean in makeshift boats.

“I can’t afford to go by sea, it’s too expensive,” Ahmed said.

Morocco plays cat and mouse with Africans headed to Europe

African emigrants are defying a campaign by Morocco to keep them away from land and sea crossings to Spain, which has become the main entry point to Europe for migrants and refugees following crackdowns elsewhere.

In recent months, Moroccan authorities have stemmed the flow of migrants into Europe.

According to the Spanish interior ministry, nearly 32,500 migrants entered Spain in 2019 by land and sea routes, down by nearly half from 2018.

But the number of migrant drownings in the western Mediterranean remains high: 325 deaths were recorded in the first 10 months of 2019, compared to 678 for the same period in 2018.

Zerouali said last year, “around 74,000 attempts to immigrate irregularly to Spain were blocked by Moroccan law enforcement,” compared to 89,000 in 2018.

In 2019, the European Union allocated €140 million to support Morocco’s efforts against irregular migration, with Spain also providing additional aid to its southern neighbour.

But even as Morocco works to tackle migration via its territory, it says it will not act as Europe’s police force.

Morocco moves closer to ‘privileged’ partnership with EU

Morocco has moved closer to its goal of obtaining a ‘privileged relationship with the EU’ following successful talks between foreign minister Nasser Bourita and the EU’s foreign affairs chief Federica Mogherini.

Integrity of solar and wind-based power generation

Integrity of solar and wind-based power generation

Jarand Rystad, CEO of Rystad Energy, says existing fossil fuel plants will play a major role in the transition towards a near-zero-carbon electricity system, due to intermittency of renewable energy sources in a short but incisive article titled Fossil fuel plants key for integrity of solar and wind-based power generation.

We all know that the world is undergoing an energy transformation, from a system based on fossil fuels to a system based on renewable energy, in order to reduce global greenhouse gas emissions and avoid the most serious impacts of a changing climate.  This article however realistic it appears, could be understood as some sort of justification of the ineluctable surrender of the fossil fuel to its time penalty.


Integrity of solar and wind-based power generation

Jarand Rystad Jan 25, 2020

Existing fossil fuel power plants will play a pivotal role in enabling the full transition to a near-zero-carbon electricity system in many countries. How can such a surprising and perhaps counterintuitive conclusion be reached? The key word is intermittency, in reference to the wide fluctuations of energy supply associated with solar and wind. Even if these two sources are, to some degree, complementary (with more wind at night and during winter, complemented by more sun at daytime and during the summer), the combination still carries a high degree of intermittency.

In this analysis, we have used data from Germany from 2012 to 2019, and scaled this up to a near 100% renewable system – assuming that the total capacity will be 160 GW, or three times the average consumption. In this system, there will still be 28 days where solar and wind combined produce less than 30% of the consumption. This happens typically during high-pressure weather systems during the winter months from November to February. 

Moreover, there will on average be two extreme periods per year, with up to three days in a row when sun and wind will deliver less than 10% of Germany’s total energy consumption. Even with adjustments to imports and consumption levels, the country would still need some 50 GW of power to avoid blackouts (with 72 hours at 50 GW equating to 3.6 TWh). Total water pumping capacity today is 7 GW over four hours or about 30 GWh. Assume this multiplies ten-fold by 2050, and assume that 45 million cars are battery electric vehicles with surplus capacity of 20 kWh each. This would deliver about 1.2 TWh in total, meaning the system would still need 2.4 TWh of power or a continuous load of 33 GW. 

During these periods, restarting old gas-fired power plants could be an economically rational way to deliver the power needed to keep the nation running as usual. The carbon footprint of this would be small – probably less than the footprint associated with constructing gigantic battery facilities for those few extreme cases. Germany presently has 263 gas power plants, with a total capacity of 25 GW. 

Thus, finding a way to maintain these plants for emergency back-up capacity could be an enabler for an energy future based around solar and wind power. Capacity pricing rather than price per kWh is probably one of the commercial changes needed. This is the same pricing model that most people also have for home internet services, and should thus not be too difficult to implement.

Solar panels all over the Sahara desert?

Solar panels all over the Sahara desert?

– Imagine newsletter #2

subscribe to the Imagine newsletter

Solar panels all over the Sahara desert? Asked Will de Freitas, Environment + Energy Editor, The Conversation, starting with:

You may have seen a variant of this meme before. A map of North Africa is shown, with a surprisingly small box somewhere in Libya or Algeria shaded in. An area of the Sahara this size, the caption will say, could power the entire world through solar energy:

Over the years various different schemes have been proposed for making this idea a reality. Though a company called Desertec caused a splash with some bold ideas a decade ago, it collapsed in 2014 and none of the other proposals to export serious amounts of electricity from the Sahara to Europe and beyond are anywhere close to being realised.

It’s still hard to store and transport that much electricity from such a remote place, for one thing, while those people who do live in the Sahara may object to their homeland being transformed into a solar superpower. In any case, turning one particular region into a global energy hub risks all sorts of geopolitical problems.

The Imagine newsletter aims to tackle these big “what if” questions, so we asked a number of academics to weigh in on the challenges of exploiting the cheapest form of electricity from perhaps the cheapest and best spot on Earth.


Sahara has huge energy potential

Amin Al-Habaibeh is an engineer at Nottingham Trent University who has researched various options for Saharan solar.


Read more: Should we turn the Sahara Desert into a huge solar farm?


He points to the sheer size and amount of sunshine the Sahara desert receives:

  • It’s larger than Brazil and slightly smaller than the US.
  • If every drop of sunshine that hits the Sahara was converted into energy, the desert would produce enough electricity over any given period to power Europe 7,000 times over.
Solar panels all over the Sahara desert?
Global horizontal irradiation, a measure of how much solar power is received per year. Global Solar Atlas/World Bank

So even a small chunk of the desert could indeed power much of the world, in theory. But how would this be achieved?

Al-Habaibeh points to two main technologies. Both have their pros and cons.

  • Concentrated solar power uses lenses or mirrors to focus the sun’s energy in one spot, which becomes incredibly hot. This heat then generates electricity through a steam turbine.
  • In this image the tower in the middle is the “receiver” which then feeds heat to a generator:
Solar panels all over the Sahara desert?
Aerial view of a large concentrated solar power plant. Novikov Aleksey/Shutterstock
  • Some systems store the heat in the form of molten salt. This means they can release energy overnight, when the sun isn’t shining, providing a 24h supply of electricity.
  • Concentrated solar power is very efficient in hot, dry environments, but the steam generators use lots of water.
  • Then there are regular photovoltaic solar panels. These are much more flexible and easier to set up, but less efficient in the very hottest weather.

Overall, Al-Habaibeh is positive:

Just a small portion of the Sahara could produce as much energy as the entire continent of Africa does at present. As solar technology improves, things will only get cheaper and more efficient. The Sahara may be inhospitable for most plants and animals, but it could bring sustainable energy to life across North Africa – and beyond.


Solar panels could have remarkable impact on the desert though

Installing mass amounts of solar panels in the Sahara could also have a remarkable impact on the desert itself.

The Sahara hasn’t always been dry and sandy. Indeed, archaeologists have found traces of human societies in the middle of the desert, along with prehistoric cave paintings of Savannah animals. Along with climate records, this suggests that just a few thousand years ago the “desert” was far greener than today.

Solar panels all over the Sahara desert?
Long-extinct elephants still remain carved into rocks in southern Algeria. Dmitry Pichugin / shutterstock

Alona Armstrong, an environmental science lecturer at Lancaster University, wrote about a fascinating study in 2018 that suggested massive renewable energy farms could make the Sahara green again.


Read more: Massive solar and wind farms could bring vegetation back to the Sahara


A team of scientists imagined building truly vast solar and wind farms, far larger than most countries, and simulated the impact they would have on the desert around them. They found that:

  • Solar panels reflect less heat back into space compared to sand.
  • This means the surface would warm, causing air to rise and form clouds.
  • This would mean more rainfall, especially in the Sahel region at the southern edge of the desert.
  • And more vegetation would grow, which would absorb more heat, drive more precipitation, and so on
  • It’s an example of a climate feedback.
Solar panels all over the Sahara desert?
Large-scale wind and solar would mean more new rain in some areas than others. Eviatar Bach, CC BY-SA

This may be a nice side effect of a huge Saharan solar plant, but it doesn’t necessarily mean it should happen. As Armstrong points out:

These areas may be sparsely populated but people do live there, their livelihoods are there, and the landscapes are of cultural value to them. Can the land really be “grabbed” to supply energy to Europe and the Middle East?


Solar panels all over the Sahara desert?
Ghardaia, Algeria. Even in the middle of the Sahara, there are settlements. Sergey-73/Shutterstock

Is this climate colonialism?

If we want to deploy millions of solar panels in the Sahara, then who is “we”? Who pays for it, who runs it and, crucially, who gets the cheap electricity?

This is what worries Olúfẹ́mi Táíwò, a philosopher who researches climate justice at Georgetown University. He mentions Saharan solar power as one of the possible policies involved in a Green New Deal, a wide-ranging plan to enact a “green transition” over the next decade.


Read more: How a Green New Deal could exploit developing countries


He points out that exports of solar power could: “Exacerbate what scholars like sociologist Doreen Martinez call climate colonialism – the domination of less powerful countries and peoples through initiatives meant to slow the pace of global warming.”

  • While Africa may have abundant energy resources, the continent is also home to the people who are the least connected to the grid.
  • Solar exports risk “bolstering European energy security … while millions of sub-Saharan Africans have no energy of their own.”

What if we’re looking at the wrong desert?

All of this will be moot if Saharan solar never actually happens. And Denes Csala, a lecturer in energy systems at Lancaster University, is sceptical.


Read more: Why the new ‘solar superpowers’ will probably be petro-states in the Gulf


It’s true that much of the world’s best solar resources are found in the desert. Here’s a graph from his PhD research which shows how Saharan nations dominate:

Solar panels all over the Sahara desert?
The sunniest tenth of the world is mostly Saharan countries … and Saudi Arabia. Denes Csala / NREL, Author provided

But Denes says that we’re looking at the wrong desert. In fact, the countries of the Arabian peninsula are better placed to exploit the sun. He argues several factors work in favour of Saudi Arabia, the UAE and co:

  • They have a history of exporting oil.
  • In the energy market, worries over security of supply means countries tend to do business with the same partners over time.
  • Ports, pipes and other infrastructure that have been built to ship oil and gas could be repurposed to ship solar energy as hydrogen.

[Energy security] would be the Achilles heel of a northern African energy project: the connections to Europe would likely be the continent’s single most important critical infrastructure and, considering the stability of the region, it is unlikely that European countries would take on such a risk.

It would be fair to say academics have mixed views about the idea of mass Saharan solar. While the energy potential is obvious, and most of the necessary technology already exists, in the long run it may prove too complicated politically.


Still think this is all fantasy?

Maybe Europeans should look closer to home. The UK Planning Inspectorate is currently examining the Cleve Hill solar farm proposal in Kent, which would involve installing nearly a million solar panels across a marshland site the size of 600 football pitches. To protect against flooding, the panels would be mounted several metres in the air. If built, despite opposition from locals and conservationists, Cleve Hill would be by far the country’s largest solar farm and about the same size as Europe’s largest, near Bordeaux.

Alastair Buckley from the University of Sheffield points out the project would be groundbreaking as, unlike other ventures of this kind, it doesn’t rely on subsidies. With solar power getting ever cheaper, Cleve Hill – if it happens – seems to mark the moment when solar may start paying for itself – even far from the world’s deserts.

Further reading


What is Imagine?

Subscribe to the newsletter Imagine.

Imagine is a newsletter from The Conversation that presents a vision of a world acting on climate change. Drawing on the collective wisdom of academics in fields from anthropology and zoology to technology and psychology, it investigates the many ways life on Earth could be made fairer and more fulfilling by taking radical action on climate change. You are currently reading the web version of the newsletter.

Here’s the more elegant email-optimised version subscribers receive. To get Imagine delivered straight to your inbox, subscribe now.

Click here to subscribe to Imagine. Climate change is inevitable. Our response to it isn’t.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

%d bloggers like this: