+44 01483 457477 farolaz@hotmail.co.uk
Advertisements

GreenBiz came up with these six tips for deploying data-driven energy management to drive meaningful emission reductions through reducing building operating emissions at scale with data analytics. So here is a much down to earth way to a certain decarbonisation strategy.

Reducing building operating emissions at scale with data analytics

By David Solsky

February 25, 2021

This article is sponsored by Envizi.

After a low-carbon target has been setGHG accounting baselines have been calculated and financial-grade GHG reporting has been established, the next chapter of decarbonization comes to the fore. What emission reduction strategies will be needed to reach your company’s target, and how should your team prioritize its efforts to plot the fastest, most cost-effective pathway for your business? 

Nearly 40 percent of global CO2 emissions come from the built environment — with 28 percent resulting from buildings in operation. Whether your organization owns, operates or occupies a building, data-driven energy management is key to reducing its GHG footprint and Scope 1 and 2 emissions.  

In the past, organizations have struggled to scale building operational energy improvement efforts for a variety of reasons. The most-cited reasons include organizational structures that fracture ownership of energy performance across disparate stakeholders, a lack of goal alignment and collaboration between landlords and occupiers, and the preponderance of legacy systems that make interoperability and data consolidation challenging.  

According to United Nations projections, carbon emissions from buildings are expected to double by 2050 if action at scale doesn’t occur. With more companies pledging to decarbonize their business, and investors increasingly scrutinizing ESG data, scalable energy management will be a critical step in the transition to a low-carbon economy.  

Today, we share six tips for deploying data-driven energy management at scale to drive meaningful emission reductions from your business. 

Portfolio energy management software. Source: Envizi.

Collect meter-level energy consumption data where possible  

Identifying GHG reduction opportunities should be a data-driven, systematic process. Start by examining building-level energy meter profiles and understanding how usage patterns relate to changing occupancy and weather conditions. Meters, which typically generate one datapoint every 15 to 30 minutes, as opposed to one datapoint every month or quarter on a utility bill, provide rich data to better inform your organization’s decarbonization strategy. 

Tip: Leverage meter data, which provides real-time transparency of when and where energy is being used, to identify unexpected usage patterns and unlock higher-resolution benchmarking and analysis opportunities.  

Benchmark the energy intensity of your building portfolio 

Building-level energy management is powerful, but it never pays to operate in a vacuum. Understanding how a building performs compared to others provides context and can help your organization identify where to focus first. The approach to benchmarking depends on the type of buildings in your portfolio. 

For example, typical portfolios of small to medium buildings (buildings of 4,000 to 20,000 square feet or so) often include many buildings dispersed across a geography (such as convenience stores, bank branches and fast-food stores), while large shopping centers, hospitals and universities manage larger, but fewer, centralized complex buildings. 

Portfolios with larger commercial buildings can leverage third-party frameworks, such as Leadership in Energy and Environmental Design, Energy Star and NABERS, which compare energy intensity against an industry benchmark.

For portfolios of small to medium buildings that are dispersed, external benchmarks are harder to find. In this case, Envizi recommends internal benchmarking using meter data to make meaningful performance comparisons. Advanced normalization techniques can be applied to identify the poorest performers in the portfolio, which helps to inform a highly targeted strategy for improving efficiency and reducing emissions.  

Tip: Undertake energy benchmarking before making investment decisions — don’t make the mistake of focusing on areas where there are no material savings. Envizi’s software can combine meter data with other contextual data (floor area, weather, operating schedules, and production units) to enable performance comparisons on a normalized basis. 

Tune operational and behavioral efficiency 

Buildings can be complex, but not as complex as building operations: the interaction between a building, its operators and occupants, and flow-on effects to energy performance. 

Building services such as heating, ventilation and air conditioning (HVAC), which often account for almost 30 percent of annual emissions, are subject to continuous change and are often responsible for considerable “energy drift” over time due to poor operational practices. For this reason, technology that proactively informs and educates building operators is necessary to support time-poor operations teams to maintain optimum performance. 

Tip: Systems go out of tune when people manipulate equipment for comfort, which typically worsens over time. Sophisticated technology continuously automates and monitors the HVAC performance to flag human adjustment that renders systems wasteful and inefficient. 

Often, manual audits will not detect the inefficiencies, but Envizi’s software uses a combination of continuous equipment monitoring, building management systems data, equipment nameplate data, weather data and other metrics to provide transparency to HVAC system performance and uncover operational issues that are otherwise difficult to detect.  

Consider plant and equipment upgrades 

Investing in equipment to deliver emissions reductions is dependent on an organization’s scale, scope and asset type and may be relevant only to building owners. 

The appetite for plant and equipment upgrades may depend on how long the asset owner intends to hold the asset, the age of the building and the age of the equipment. Envizi recommends that building owners and operators engage their engineering consultants and specialist contractors to determine the feasibility of plant and equipment upgrades. 

Tip: Technology can assist in the pre- and post-analysis of reduction projects to measure effectiveness and return on investment (ROI). Envizi’s software uses the International Performance Measurement and Verification Protocol to ensure calculations will withstand audit and validation. 

Consider on-site and off-site renewables 

After implementing solutions for operational, behavioral and system efficiencies, many organizations seek renewable energy as a proactive solution to get ahead on the decarbonization journey. Decisions on whether to procure on-site or off-site renewables are complex, and Envizi recommends coordinating with your organization’s engineering consultant or specialist contractor to assess its options. 

Tip: Software platforms such as the one offered by Envizi can assist with monitoring the performance of solar assets, comparing the actual performance to promised performance and integrating the accounting of the renewable energy certificates to facilitate the most traceable reporting and auditing process.  

Engage stakeholders

Energy management is rarely the remit of one team, but rather involves multiple stakeholders across an organization. The success of any emissions-reduction effort will be affected by the organization’s ability to effectively engage a cross-collaborative stakeholder group.   

Typically, organizations with a strong culture of governance and executive ownership of the energy agenda can make the most impactful positive change. Often, inspirational leaders can make the difference with robust internal communication, empowerment through clear roles and responsibilities, and incentives for employees to take ownership of the energy reduction goals.  

Tip: Find a senior executive-level champion to shepherd the decarbonization journey while supporting the pursuit of their business goals, whether ROI, risk mitigation or otherwise. Leverage a single system of record to track emissions and energy management opportunities to better enable cross-functional collaboration between stakeholder groups.  

Conclusion

The transition to a low-carbon economy will require organizations to drastically increase the energy efficiency of buildings in operation. The following data-driven tactics can help your organization identify and achieve meaningful emission reductions: 

  • Collect meter data where possible to understand granular energy consumption.
  • Benchmark the energy performance of the buildings by size/cohort in your organization’s portfolio to identify poor performers. 
  • Use technology to monitor how HVAC systems are configured, to detect energy waste and optimization opportunities. 
  • Before implementing equipment retrofits, solar photovoltaics or energy projects, engage a specialist to understand your organization’s options, and use data to establish a baseline against which to measure improvements.
  • Nominate a senior executive to champion your organization’s emissions-reduction program. A single system of record for emissions and energy can help enable cross-functional collaboration. 

If you’d like to learn more about using data and technology to streamline and accelerate decarbonization, read “Pathway to Low-Carbon Guide.”