Why Architectural Design is Most important in construction?

Why Architectural Design is Most important in construction?

Advertisements

Why Architectural Design is Most important in the construction industry? Wondered rightly Diane Jones in West Seattle Blog.  Here is her answer.

The image above is just for representation and is credit to Gazette.One

 

Why Architectural Design is Most important in construction industry?

By dianejones, Participant

Architectural design is crucial in the construction industry for several reasons:

Functionality: Architectural design ensures that the building or structure is designed to serve its intended purpose effectively. It takes into account the needs and requirements of the users, incorporating various functional aspects such as spatial planning, circulation, and accessibility. A well-designed building enhances productivity, efficiency, and overall user experience.

Aesthetics: Architectural design adds visual appeal and beauty to a structure. It considers elements such as proportion, scale, balance, materials, colors, and textures to create a harmonious and visually pleasing environment. Aesthetically pleasing buildings not only enhance the quality of life for occupants but also contribute to the overall urban or rural landscape.

Safety and Structural Integrity: Architectural design plays a crucial role in ensuring the safety and structural integrity of a building. It takes into account factors such as load-bearing capacity, structural systems, resistance to natural forces (e.g., earthquakes, wind), fire safety, and adherence to building codes and regulations. Proper architectural design minimizes the risks associated with structural failures, accidents, and disasters.

Sustainability: With growing concerns about environmental impact and resource conservation, architectural design plays a vital role in promoting sustainability in the construction industry. Designers consider strategies for energy efficiency, water conservation, use of eco-friendly materials, waste reduction, and integration of renewable energy systems. Sustainable architectural design minimizes the ecological footprint of a building and contributes to a greener future.

Economic Considerations: Architectural design influences the economic aspects of a construction project. Effective design can optimize the use of space, reduce construction costs, and improve operational efficiency. It takes into account factors such as lifecycle costs, maintenance requirements, and adaptability to future needs. Well-designed buildings have the potential to increase property value and attract occupants, contributing to long-term economic viability.

Cultural and Social Context: Architectural design is influenced by the cultural and social context in which it is situated. It takes into account local traditions, cultural values, and community needs. Architecture can reflect and reinforce cultural identity, provide spaces for social interaction, and contribute to the overall well-being of communities.

In summary, architectural design is essential in the construction industry because it ensures functionality, aesthetics, safety, sustainability, economic viability, and cultural relevance in the built environment. It integrates various considerations to create well-designed and meaningful spaces that positively impact individuals, communities, and the environment.

.

.

Living materials are the future of sustainable building

Advertisements
A Pennsylvania State University RESEARCH on living materials that are the future of sustainable building has elaborated on this aspect of the building materials and / or their combination as illustrated by the above image of Jose Duarte, professor of architecture, and doctoral student Elena Vazquez adjust panels on a prototype of a dynamic window shading system that Vazquez designed and built.  Credit to: Patrick Mansell. All rights reserved.  If this goes through, we could safely say that building sites will look a bit different in the future.

Architecture “lagging behind all other sectors” in climate change fight

Advertisements

“Inertia” in the built environment sector, according to Yamina Saheb is yet another proof that Architecture is “lagging behind all other sectors” in the climate change fight. Here is the story as per DEZEEN.

Architecture “lagging behind all other sectors” in climate change fight says IPCC report author

By Jennifer Hahn

Efforts to halt catastrophic climate change are being held back by “inertia” in the built environment sector, according to Yamina Saheb, co-author of the latest report from the United Nations climate change panel.

“The sector hasn’t modernised at all since the second world war,” she told Dezeen. “And now, the data shows it’s lagging behind all other sectors.”

“Each gram of greenhouse gas emissions from buildings means a mistake in their design,” added Saheb, a former policy analyst for the European Commission and the International Energy Agency.

“Architects and urban planners should really look at this report carefully and rethink the way they work.”

Up to 61 per cent of building emissions could be cut by 2050 using technologies available today, the Mitigation of Climate Change report from the Intergovernmental Panel on Climate Change (IPCC) found.

But progress has so far been held back by widespread “inertia,” as well as a lack of ambition and prioritising of short-term solutions and profits over long-term gains, Saheb said.

Architects are key to mitigating climate change

The report, which was written by Saheb alongside more than 270 scientists from 65 countries, is the final instalment in the IPCC’s three-part review of the current state of climate science.

Following on from two earlier reports covering its causes and effects, the report sets out a plan for how global warming could be mitigated.

The decarbonisation pledges made by international governments in a bid to halve emissions by 2030 and reach net-zero by 2050 are simply not enough, the report found, falling short by as much as 23 billion tons of CO2e.

Yamina Saheb co-authored the latest IPCC report

As a result, the world is on track to warm by more than double the 1.5-degree limit set out in the Paris Climate Agreement this century.

“Covering up for these shortfalls will require taking actions across all sectors that can substantially reduce greenhouse gas emissions,” the report states.

The built environment is among the key sectors highlighted in the report that could help the world to cut emissions by 50 per cent this decade.

“Either get this right or it’s wrong forever”

Urgent action is needed from the sector before 2030, the report says, as the long lifespan of buildings and infrastructure locks in emissions and polluting behaviours for decades to come.

“Residential buildings undergo major renovation once every 25 years,” Saheb explained. “That means if you’re not renovating a building to zero-emissions standards this decade, it will not be renovated to this level by 2050 either.”

“For buildings, there is only one round left between now and 2050, so we either get this right or it’s wrong forever.”

Retrofitting is the single most effective strategy for developed countries to limit emissions from buildings, the report found. But so far, “low renovation rates and low ambition” have hindered large-scale emissions reductions.Read:IPCC climate report a “call to arms” say architects and designers

This can be traced back to the construction industry’s lack of digitisation, Saheb argues, and the fact that homeowners have to organise every element of a retrofit, from the heat pump to the insulation, themselves.

“If you need to repair your car, you don’t have to think about each piece separately,” Saheb said. “You just take it to a garage, they fix it and you don’t care about the details.”

“But for a renovation, you as an individual are required to arrange all the details yourself, which is crazy and unrealistic,” she added. “We should have IKEA kits for renovating our buildings.”

“And in Europe, we need to make renovation mandatory to zero-carbon standards. If we don’t have this required by law, it will never happen.”

Sufficiency undervalued due to financial interests 

Crucially, the report also highlights that architects and urban planners have so far neglected to focus on designing for “sufficiency”.

Unlike efficiency measures, which are marginal short-term technological improvements, this term is used to describe broader strategies such as passive cooling, bioclimatic design and prioritising the construction of denser multifamily homes.

These kinds of measures can drastically reduce a building’s demand for energy, materials, land and water over its lifecycle, without relying on added technology and materials that will need to be produced, powered and maintained.

Bioclimatic design strategies include solar chimneys, as used in Casa Flores by Fuster + Architects

“If you design a new development with lots of single-family homes, you will need more land and more construction materials, as well as more energy and water in use than if you go for multifamily buildings,” Saheb said.

“And then you lock the city where you’re building into emissions and car-dependent mobility for generations. This shows how urban and land-use policies will play a major role in the decarbonisation of buildings, which was not considered before.”

Part of the reason that this has so far been undervalued is the fact that architects and urban planners get paid based on the number of square miles they build, Saheb argues, so designing more compact structures runs against their financial interests.

“No one is questioning if the way they make money is aligned with their contribution to climate mitigation,” she said.

Efficiency is not enough

The industry’s failure to adapt sufficiency strategies so far has actually counteracted emissions reductions achieved by making buildings more energy efficient, the report found.

Adding insulation, switching to more modern appliances and other efficiency measures reduced building emissions by 49 per cent between 1990 and 2019. But the lack of sufficiency measures led to a simultaneous emissions increase of 52 per cent.

“The efficiency improvement was fully offset by the lack of sufficiency measures,” Saheb said.

“Previously, climate mitigation policies for buildings included only energy efficiency and the supply with renewables. And we know today that without sufficiency, this is not enough.”

The top image shows Maya Lin’s Ghost Forest installation.

.

What is Net-Zero Architecture?

Advertisements

What is Net-Zero Architecture? Wondered Dima Stouhi before giving some of her thoughts on the Terms and Design Strategies.

As revolutionary as the construction sector may seem nowadays, it currently accounts for nearly 40% of the world’s carbon dioxide emissions, 11% of which are a result of manufacturing building materials such as steel, cement, and glass. Fast forward a couple of years later, after a life-changing global pandemic and indisputable evidences of climate change, CO2 emissions are still on a rise, reaching a historical maximum in 2020 according to the 2020 Global Status Report for Buildings and Construction. Although a lot of progress has been made through technological advancements, design strategies and concepts, and construction processes, there is still a long way to go to reduce carbon emissions to a minimum or almost zero in the development of built environments.

+ 9

Responding to the alarming statistics, governments have put in place several action plans to limit carbon emissions and ensure a sustainable environment. In July 2021, the European Commission adopted a package of proposals to reduce net greenhouse gas emissions by at least 55% by 2030. Earlier this year, the commission launched its second edition of the New European Bauhaus program, an initiative designed to transform the built environment into a more sustainable and socially valuable one.

As the world embarks on a mission towards a net-zero environment, here are some terms that encompass net-zero architecture.

Net-Zero Architecture

By definition, “net-zero”, also known as carbon neutrality, is the act of negating or canceling out the amount of greenhouse gases produced by human activity, by reducing existing emissions and implementing methods of absorbing carbon dioxide from the atmosphere. Although net-zero buildings represent a fragment of new construction projects, the technology, tools, and knowledge that architects have acquired over the past years have made designing a net-zero building the new norm. To design net-zero buildings, we listed 7 things to take into account to contribute to this global objective. The list includes making use of bioclimatic architecture and passive concepts, provide renewable energy on site whenever possible, using energy efficiency of appliances and lighting, and considering embedded carbon. Beyond architecture, urban planners have also been trying to find strategies to create environmentally friendly communities. In 2018, Architecture for Humans proposed the Zero Emission Neighborhood, an eco-village concept in the city of PristinaKosovo that ensures optimum sustainability for the entire community through “zero emission” buildings, passive design strategies, active solar systems, and energy efficient appliances.

Net Zero Village. Image © Architecture for Humans

Net-Zero Energy

Net-Zero Energy is when the building is able to offset, or counterbalance the amount of energy required to build and operate throughout its lifetime in all aspects of the site, source, cost, and emissions. In other words, the building is able to produce enough energy to cancel or “zero-out” the amount of energy it takes to operate daily. Net-zero energy buildings are often designed with these three criteria: “producing energy onsite via equipment like solar panels or wind turbines, accounting for its energy use through clean energy production offsite, and reducing the amount of energy required through design optimization”. Achieving it is not entirely dependent on the building being efficient, but on reducing the energy load, and then employing renewable energy to offset the remaining energy. An example of net-zero energy buildings is the Net Zero Energy House by Lifethings, where the client wanted a house based on common sense in its design, construction, and budget. The 230 sqm house includes photovoltaic panels, solar heat collection tubes, wood burning boiler, four kitchens and four bathrooms, all built with a modest budget.

Net Zero Energy House / Lifethings. Image © Kyungsub Shin

Net-Zero Carbon

Net-zero carbon is achieved through reducing construction techniques and building materials that result in high carbon emissions. Put simply, Net Zero Carbon = Total Carbon Emitted – Total Carbon Avoided. Reducing embodied carbon through a concise material selection and construction techniques often results in a decrease in harmful chemical off-gassing, which affects the occupants’ productivity and wellbeing. The Courtyard House by Manoj Patel Design Studio promotes carbon positive and net-zero operations through smart planning of space and material selection, all while ensuring the emotional and physical well-being of its occupants. Clay tiles on the facade are cut and interlocked in a way that explores wall hangings from the sky and compliments the white volume. The structure meets all climatic and aesthetic needs of the space, particularly through the square patterns which parallel the projections of the sun during the day and make room for cool air only to flow in through the pores.

The Courtyard House / Manoj Patel Design Studio. Image © MKG Studio

Carbon Emissions & Fossil Fuels

Carbon emissions, or greenhouse gas emissions, are emissions emerging from the manufacturing of cement and burning of fossil fuels, and are considered the main reason behind climate change. Fossil fuel is another term used to describe non-renewable carbon-based energy sources such as coal, natural and derived gas, crude oil, and petroleum products. Although they originate from plants and animals, fossil fuels can be also made by industrial mixtures of other fossil fuels, such as the transformation of crude oil to motor gasoline. It is estimated that almost 80% of all manmade greenhouse gas emissions originate from fossil fuels combustion, with the construction industry being one of its biggest contributors.

Courtesy of cove.tool
Sustainability

By definition, sustainability is when a subject can be sustained, meaning that it can be maintained at length without being interrupted, disintegrated, or weakened in the long run. In architecture, however, the term “sustainability” has been used in various contexts. Some of which is to indicate being eco-conscious, an environmentalist, or “meeting our own needs without compromising the ability of future generations to meet their own needs” using natural, social, and economic resources. Looking at all the “sustainable” projects that have been developed and are being proposed, it aims to be a holistic approach that takes into account three pillars: the environmentsociety, and economy, all mediated together to ensure vitality and durability. Sustainability is not just implemented on an architectural level through recycled materials and construction techniques, but also on an urban scale. The European Commission, for instance, adopted several nationwide proposals that pushed the continent a step further towards implementing the European Green Deal, an action plan that transforms the EU into a modern, resource-efficient, and competitive economy.

Zero House / Tenio. Image © AWESOME
Passive Design

By definition, “passive solar energy is the collection and distribution of energy obtained by the sun using natural, non-mechanical means”, which in architecture, has provided buildings with heat, lighting, mechanical power, and electricity as naturally as possible. The configuration behind passive systems consists of three types: direct gain, indirect gain, and isolated gain, and takes into account design strategies such as: location with respect to the sun, the overall shape and orientation of a project, allocating interior rooms with respect to the sun and wind, window placement, sheltered entrance, choosing materials that absorb heat, glass facades / solar windows where necessary, implementing trombe walls, skylights, water features, and shading elements, to name a few.

Conservatory. Image © Onnis Luque
Adaptive Reuse

Architects and urban designers have a responsibility of ensuring that the spaces people live in cater to them, the environment, the society as a whole, and maintain its cultural and historic value. However, recent years highlighted numerous socio-cultural predicaments related to the built environment such as housing crises, demolition of historic landmarks, lack of green areas, etc. One way of dealing with these crises was by reusing old structures and complimenting them with new elements or functions instead of opting for complete demolition and reconstruction, which would have inevitably generated a much bigger carbon footprint. Adaptive reuse can be executed in the form of reusing materialsinterventions in pre-existing architecturesreclaiming abandoned architecture, or changing the original function of the space.

Convent de Sant Francesc / David Closes. Image © Jordi Surroca

This article is part of the ArchDaily Topics: The Road to Net Zero Architecture presented by Rander Tegl.

Randers Tegl aims to take responsibility and think sustainable as a part of reaching the goal of Net Zero. Both in terms of how building materials impact the climate and how the materials age, but also with a focus on architecture. That is why Randers Tegl created their sustainable series GREENER, which comes with full documentation in the form of EPD, so it is possible to use the product in technical calculation programs.

Read the original article on ArchDaily.

.

From Dubai to Southland: a Striking NZ architectural mesh

Advertisements

A New Zealand Stuff article elaborates on how from Dubai to Southland this striking NZ architectural mesh on Invercargill CBD rebuild is getting the attention it deserves. But what is all the fuss about?

The above image is for illustration and is of Stuff.co.nz.

Dubai to Southland: Striking NZ architectural mesh on Invercargill CBD rebuild

SUPPLIED The colourful facade which will go on the Invercargill Central is made in Wellington. The same company has produced a similar product for Expo 2020 Dubai. [Artist impression of Invercargill project]

Tens of millions of people will walk underneath a striking Kiwi-made canopy at Expo 2020 Dubai, and the same product will adorn the Invercargill city centre redevelopment.

Petone company Kaynemaile​ make a polycarbonate architectural mesh, which has been used in a 12,000-square metre canopy at the Middle Eastern expo, which is a six-month world fair, involving 192 countries.

The same mesh product will cut a similarly striking figure when it is wrapped around the car park of the redeveloped Invercargill CBD.

About a tenth of the size of its Dubai cousin, the Invercargill facade will feature 1200sqm of the polycarbonate mesh, which will be lit with programmable lighting.

Invercargill Central project director Geoff Cotton said it would wave in the wind, as a moving piece of art.

The mesh would screen the development car park, face Tay St, and Cotton said it would go up towards the end of winter 2022.

SUPPLIED Petone firm Kaynemaile made the canopy at Expo 2020 Dubai from polycarbonate architectural mesh.

Kaynemaile’s chief executive officer Kayne Horsham​ designed chainmail costumes to be used in Lord of the Rings, which inspired the architectural mesh.

All their products are made in Wellington. The mesh in Dubai forms a canopy to the entrance of the expo, which is expected to host 25 million visitors over its six-month duration.

The expo was delayed a year because of the Covid-19 pandemic but kept the 2020 moniker, and began on October 1.

READ MORE:
Lord of the Rings chainmail inspires Dubai Expo canopy
Southland welcomes Level 3 in with coffee and catch up on CBD block development
Invercargill CBD block rebuild boss hopes lost time can be made up

.