The art of designing energy efficiency

The art of designing energy efficiency

Advertisements

Nareg Oughourlian, managing Director of Commercial at Alpin Limited, with a background in Mechanical Engineering.

Energy efficiency: Rome was not built in a day, or so the saying goes. In November 2021, the UAE pledged to achieve net-zero emissions by 2050 and, in doing so, became the first Gulf state to commit to a timeline to decarbonise its economy and fully reach net-zero greenhouse gas emissions.

Not that this happened out of the blue; the UAE has been heavily financing clean energy projects such as Masdar, Sustainable City, and the Barakah nuclear plant for over 15 years, inexorably pushing the sustainability envelope in the region and worldwide.

Internationally recognised guidelines require most companies to decarbonise 90-95% of CO2.

The country has always been known for its sky-high ambitions and impressive success rate, of that there is little doubt. However, the net-zero target marks a real turning point in the way things are done in the UAE and, more importantly, sets up a challenging and exciting target. It requires an exact drive for the future, challenged only by the limitations of sustainable development.

The previously held reliance on oil is changing, and the region is shifting towards alternative options. Shifting towards an ecological mindset remains at the core of any decisions that need to be made moving forward. The UAE is proudly leading the way in the region alongside the Kingdom of Saudi Arabia.

Following the pledge to reduce emissions at the 2015 Paris agreement, many countries fell through on the promise to achieve short-term goals, but structurally altering the policies of a nation takes time, and changes are slowly and surely being made across the globe. In the UAE, winning the bid to host the COP28 global climate talks in 2023 further cements the seriousness and gravity of the 2050 target and, amongst other things, the future of green buildings and the built environment in the region.

Energy efficiencies and net-zero goals

Net-zero emissions are essentially focused on maintaining a balance between the greenhouse gases created and the amount that are taken out. In addition to reducing carbon emissions, there is also reliance on carbon offsetting or carbon removal.

Internationally recognised guidelines require most companies to decarbonise 90-95% of all CO2 emissions through internal abatement options to reach net-zero. For the remaining 5-10% of emissions, qualifying neutralisation activities can be used. Those neutralisation activities are not referred to as offsets, but instead include only activities that directly pull carbon out of the atmosphere, which can be done through Direct Air Capture, bioenergy with carbon capture and storage, improved soil and forest management, and land restoration. This is a contrast to the term ‘zero carbon,’ which concentrates on reducing existing carbon emissions to zero.

It is a well-known fact that the construction industry is a leading cause of C02 emissions, with 39% of global CO2 emissions attributed to building and construction. This means that any small changes within the industry can enormously impact the environment and climate change.

So, how can buildings reduce their impact on the environment? The immediate answer to these questions lies within the innovation of Low and net-zero Energy and Carbon Strategies. A net-zero building produces as much energy as it consumes on an annual basis. This energy balance is propped up by maintaining energy efficiency by the effective design of building operations.

 

Factory-made homes cut carbon emissions by 45%

Advertisements
Construction Enquirer estimates that Factory-made homes can cut carbon emissions by 45%.  It is by Aaron Morby.
Shouldn’t countries of the MENA region especially those where housing development is intense, get any inspiration from the idea of factory-made homes cutting carbon emissions by 45%?
Anyway here is:

Factory-made homes cut carbon emissions by 45%

Housing construction using volumetric modular systems can produce 41-45% less carbon dioxide emissions than traditional methods of building homes.

Substantial embodied carbon emissions savings were unearthed by academics from Cambridge University and Edinburgh Napier University in a study on a high-rise and a mid-rise modular scheme in London.

The buildings totalling 879 homes were delivered by Tide Construction using its modular system. University academics found that 28,000 tonnes of embodied carbon emissions were saved from construction – the equivalent of the CO2 absorbed by 1.3m trees in a year.

(l-r)44 and 38 storey George Street in Croydon, now known as Ten Degrees and The Valentine in Gants Hill, London Borough of Redbridge were measured

This is well ahead of industry targets and shows a switch to modular construction could radically reduce the carbon footprint associated with the UK government’s ambition to build 300,000, better quality homes.

Embodied carbon, the CO2 produced during the design, construction and decommissioning phases of a development, is slashed because buildings require lower volumes of carbon-intensive products such as concrete and steel.

The report, “Life Cycle Assessments of The Valentine, Gants Hill, UK and George Street, Croydon, UK” also shows emissions were lower because indirect carbon emissions from deliveries and on-site workers are reduced.

Dr Tim Forman, senior research associate at University of Cambridge, said: “Buildings are responsible for approximately 40% of global energy-related carbon emissions, and there is an urgent need to reduce the carbon intensity of construction and buildings in use.

“As buildings become more energy efficient in operation, reducing the carbon associated with construction — including the production and transportation of materials and site activities – and their end of life is becoming increasingly significant.

“This study underscores the fundamental importance of quantifying carbon in construction and across a building’s life cycle.”

Professor Francesco Pomponi of Napier University, said: “This study is a truly comprehensive and robust life cycle assessment of the modular solution.

“The analysis of two residential buildings was conducted in accordance with the latest carbon assessment guidelines, and analysis was based on conservative assumptions and a careful selection of data inputs.

“While further studies should be completed to deepen our understanding, the research makes a compelling case for the embodied carbon-saving benefits of modular construction.”

 

Achieving AI and Machine Learning to accelerate the energy transition

Advertisements
A successful and timely energy transition needs Artificial Intelligence and Machine Learning (AI\ML ) to accelerate change. 
The transition to sustainable construction could well be at the forefront of such a transition.  

Achieving AI and Machine Learning to accelerate the energy transition

Reducing costs, enabling more performant (new) energy businesses and the complex coordination of multiple energy players are crucial in this transformation. However we’re still in the early stages of AI\ML, how can we achieve AI\ML rapid adoption at scale?

Why there is no energy transition without Intelligence Intensity

For the green deal to succeed, we need to start moving towards a whole system approach, interconnecting sectors from diverse energy carriers to industries, transport, and buildings, driving Power-to-X, industrial clusters, industrial smart steering, 24 by 7 green energy matching, hybrid energy parks, and new low-carbon energy value chains leading to billions of networked “things”. Flexible yet complex coordination is required that is close to real-time and optimised for multiple, varying stakeholder interests – impossible to be done by humans.

The key role AI/ML plays in reducing the gigantic investments required for the energy transition can lower the levelised costs of energy, accelerate the issuing of permits and grid connections, and optimise yield, thus speeding up the deployment of the massive renewable generation required. Grid capacity can be expanded digitally, avoiding traditional grid reinforcements that are expensive and time-consuming to build. AI\ML also enables flexibility services coordination for maximum DERs value and infrastructure usage.

Microsoft is fully committed to a rapid AI\ML adoption at scale which is already evolving into a technical reality with higher use than anticipated. Partnerships and co-innovation with clients and partners and the wider ecosystem accelerate the creation of missing digital solutions and the development of digital accelerators for wider, faster, and simpler adoption of digital.

Accelerating AI\ML innovation through open data platforms, open ecosystems, open-source

AI\ML needs a lot of data! Strengthened open energy data platforms give innovators in the ecosystem access in a safe, scalable and performant way to vast volumes of quality data essential to train AI models. Microsoft joined OSDU (Open Subsurface Data Universe) to create an open-source, cloud-agnostic platform to collect subsurface data from O&G operations valuable to O&G but also to renewable offshore players.

Energy Datahubs in Europe also play a vital role in driving innovation. This is why Microsoft and Energinet partnered to co-create the open-source Green Energy Hub blueprints on GitHub for experts to contribute and for others to develop their own data hubs, creating an accelerator for the future smart green solutions.

With AI still in its early stages, it is key to inspire energy players of its successful, tangible impact and to facilitate access to solutions. Microsoft launched the Open AI Energy Initiative (OAI), an open ecosystem for operators, independent software vendors, and equipment providers to offer additional solutions, and the global AI Centre of Excellence for Energy called Microsoft Energy Core features over 40 partner solutions.

The driving co-innovation force of strategic partnerships with energy leaders

Strategic partnerships with market makers enables the acceleration of transformation but also to co-invest deeper and wider in the creation of leading-edge digital solutions for current operations and for the complex chain orchestration needed for a successful energy transition. Foundational research for AI in energy and energy-specific platform-based capabilities are not only developed faster.

These intelligence-intense, leading-edge lighthouse use cases inform the industry for fast followers and create digital optimism for speed. Together we become a driving force for the formation of new value chains, ecosystems, and business models that accelerate meeting the goals of the green agenda.

Utilities specific digital accelerators for wider, faster, and simpler adoption

Energy players want more pre-built capabilities specific to utilities for faster time to market AI\ML models. The 15 years of enhanced utilities-specific industry data models acquired from ADRM exemplify the current enrichment with automation of data ingestion from multiple sources, addressing a major hurdle on data.

Another example is the common domain-specific ontologies that are fundamental to accelerating the development of digital twin solutions. Microsoft, together with Agder Energi, launched the open-source Energy Grid Ontology to be added by others for smart cities and smart buildings.

More broadly, the road ahead is for industry clouds. Energy players can focus much higher in the technology stack at the business applications layer, thus shortening innovation cycles, getting faster into the predictive era, and simplifying adoption.

Through co-investment, Microsoft is accelerating the development of energy-specific platform-based capabilities allowing energy players to focus their AI efforts at the business applications level such as for portfolio optimisation, risk management, and also trading.

WATCH: Why AI is key in solving complex energy transition challenges

Learn more about Microsoft

The above-featured image is of Shell on the very subject of Energy Transition through AI, etc.

Accelerated renewables-based electrification paves the way for a post-fossil future

Advertisements

The hydrocarbon producing countries of the MENA region believe in their preeminent albeit shrinking source of revenues for decades. But, as shown by some counties of the Gulf net-zero recent pledge, they see economic and political opportunities in moving to the green energy transition. Accelerated renewables-based electrification paves the way for a post-fossil future by Nature Energy explains how the world and particularly the EU in order to achieve its climate and geopolitical goals, it will need to substantially increase its engagement with Gulf states.

The image above is for illustration and is about how Fossil Fuel Jobs Will Disappear, So Now What?

Accelerated renewables-based electrification paves the way for a post-fossil future

The research was published in Nature Energy.

Credit: CC0 Public Domain

Cost-slashing innovations are underway in the electric power sector and could give electricity the lead over fossil-based combustion fuels in the world’s energy supply by mid-century. When combined with a global carbon price, these developments can catalyze emission reductions to reach the Paris climate targets, while reducing the need for controversial negative emissions, a new study finds.

“Today, 80 percent of all energy demands for industry, mobility or heating buildings is met by burning—mostly fossil—fuels directly, and only 20 percent by electricity. Our research finds that relation can be pretty much reversed by 2050, making the easy-to-decarbonise electricity the mainstay of global energy supply,” says Gunnar Luderer, author of the new study and researcher the Potsdam Institute for Climate Impact Research. “For the longest time, fossil fuels were cheap and accessible, whilst electricity was the precious and pricier source of energy. Renewable electricity generation—especially from solar photovoltaics—has become cheaper at breath-taking speed, a pace that most climate models have so far underestimated. Over the last decade, alone prices for solar electricity fell by 80 percent, and further cost reductions are expected in the future. This development has the potential to fundamentally revolutionize energy systems. Our computer simulations show that together with global carbon pricing, green electricity can become the cheapest form of energy by 2050, and supply up to three quarters of all demand.”

The reasons lie mainly in the ground-breaking technological progress in solar and wind power generation, but also, in the end, uses of electric energy. Costs per kilowatt hour solar or wind power are steeply falling while battery technology e.g. in cars is improving at great speed. Heat pumps use less energy per unit of heat output than any type of boiler and are becoming increasingly competitive not only in buildings, but also in industrial applications. “You can electrify more end-uses than you think and for those cases actually reduce the energy consumption compared to current levels,” explains Silvia Madeddu, co-author and also researcher at the Potsdam Institute.

“Take steel production: Electrifying the melting of recycled steel, the so-called secondary steel, reduces the total process energy required and lowers the carbon intensity per ton of steel produced,” says Madeddu. “All in all, we find that more than half of all energy demand from industry can be electrified by 2050.” However, some bottlenecks to electrification do remain, the researchers point out. Slowest in the race to decarbonisation are long-haul aviation, shipping, and chemical feedstocks, i.e. fossil fuels used as raw materials in chemicals production.

Limiting the reliance on negative emissions

The scale of the technological progress holds great opportunities for countries to leapfrog and for investors alike. However, not every technology is a success story so far. “In this study, we constrained the reliance on technologies which aim at taking carbon out of the atmosphere, simply because they have proven to be more difficult to scale than previously anticipated: Carbon Capture and Storage has not seen the sharp fall in costs that, say, solar power has. Biomass, in turn, crucially competes with food production for land use,” Luderer lays out. “Interestingly, we found that the accelerated electrification of energy demands can more than compensate for a shortfall of biomass and CCS, still keeping the 1.5 degrees Celsius goal within reach while reducing land requirements for energy crops by two thirds.”

Era of electricity will come—but global climate policy must accelerate it to meet climate goals

“The era of electricity will come either way. But only sweeping regulation of fossil fuels across sectors and world regions—most importantly some form of carbon pricing—can ensure it happens in due time to reach 1.5 degrees,” Luderer says. Indeed, the simulations show that even if no climate policy at all is enacted, electricity will double in share over the course of the century. Yet in order to meet the goals of the Paris Agreement of limiting global warming to well below two degrees, decisive and global political coordination is crucial: pricing carbon, scrapping levies on electricity, expanding grid infrastructure, and redesigning electricity markets to reward storage and flexible demands. Here, hydrogen will be a crucial chain link, as it can flexibly convert renewable electricity into green fuels for sectors that cannot be electrified directly. “If these elements come together, the prospects of a renewables-based green energy future look truly electrifying,” says Luderer.

.

Climate fight: the world’s biggest negotiation

Advertisements

Climate fight: the world’s biggest negotiation in a new podcast series could be the start of a salvation movement that is not overdue. Here is :

Climate fight: the world’s biggest negotiation – introducing a new podcast series

By Jack Marley, The Conversation

How will we actually tackle the climate crisis? And who gets to decide? As Glasgow gets ready to hold the COP26 climate summit in November, The Anthill Podcast is launching Climate fight: the world’s biggest negotiation, a new podcast series taking you inside the fight for our planet’s future.

Many people breathed a sigh of relief when world leaders agreed to limit global warming to well below 2°C, and preferably below 1.5°C, at a summit in Paris in 2015.

But six years later, the UN issued a new “code red for humanity” in its latest report on climate change. Scientists on the Intergovernmental Panel on Climate Change (IPCC), said global warming would exceed 1.5 or even 2°C above pre-industrial levels this century, “unless deep reductions in carbon dioxide and other greenhouse gas emissions occur in the coming decades.”

World leaders, scientists and climate activists will meet in Glasgow for the 26th Conference of the Parties on October 31, to try and agree new targets on emissions reductions that keep this goal in sight. They’ll also discuss how to get there in a fair and just way.

In this podcast series, we’ll speak to some of the experts influencing climate policy, and to some of the people around the world who will see their lives change as a result of it.

Leading up to the summit, we’ll be exploring some of the big questions feeding into these negotiations. Questions about: money – and how much the world’s richest countries should give to protect the poorest parts of the world from the effects of climate breakdown; about the quest for net zero, and the technology needed to get there; about the trade-offs required to transition away from fossil fuels, particularly for those communities hit hardest by the shift to renewables. And what impact the voice of young people is having on the climate fight.

We’ll also be in Glasgow for the COP26 summit, talking to experts to unpack how the negotiations went.

The first episode will go live via The Anthill Podcast channel on October 6. Listen on The Conversation or follow The Anthill wherever you get your podcasts.

The Climate Fight podcast series is produced by Tiffany Cassidy. Sound design by Eloise Stevens and the theme tune is by Neeta Sarl. The series editor is Gemma Ware.


Climate fight: the world’s biggest negotiation is a podcast series supported by UK Research and Innovation, the UK’s largest public funder of research and innovation.


Jack Marley, Environment + Energy Editor and Host of the Climate Fight podcast series, The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.