Investing in MENA Green Hydrogen can Drive . . .

Investing in MENA Green Hydrogen can Drive . . .

 

Investing in MENA Green Hydrogen can Drive Global Steel Decarbonization

Connect with us:

MENA. Green Hydrogen. Bigstock

Owing to its significant solar and wind potential, the Middle East and North African (MENA) region has the opportunity to lead the decarbonization of the global steel industry.

Emphasized in a recent report by the Institute for Energy Economics and Financial Analysis, the regional steel industry – which currently represents one of the most competitive globally – has already taken significant strides to decarbonize through the application of direct reduced iron-electric arc furnace technology (DRI-EAF).

 

Now, with new opportunities emerging across the green hydrogen landscape and government objectives to accelerate the transition even further, the MENA region is set to lead the world in the adoption of green hydrogen within the steel industry.

“The MENA region can lead the world if it shifts promptly to renewables and applies green hydrogen in its steel sector. MENA has an established supply of DR-grade iron ore and its iron ore pelletizing plants are among the world’s largest. In 2021, MENA produced just 3% of global crude steel but accounted for nearly 46% of the world’s DRI production,” said Soroush Basirat, author of the Institute for Energy Economies and Financial Analysis report.

With the region offering the highest potential for photovoltaic power globally – with theoretical production estimated at more than 5.8 KWh per m² – converting existing gas-powered generating plants to green hydrogen would create a carbon-free steel industry in the region. Decarbonizing the steel industry aligns with the World Bank’s prediction that by 2050, more than 83GW of wind and 334GW of solar will be added to the regional energy mix, improving the provision of clean energy and making the conversion to green hydrogen-powered steel production that much simpler.

“MENA’s knowledge of this specific steel technology is an invaluable asset. This production knowledge, abetted by further work on iron ore beneficiation, pelletizing and DR plants, is among the most important steel decarbonization pillars, and will greatly assist MENA’s transition. Compared to other regions, MENA’s existing DRI-EAF capacity means that no extra investment is needed for replacing the base technology. All new investment could be focused on expanding production of green hydrogen among other renewables. If it acts fast, MENA has the potential to lead the world in green steel production,” Basirat said.

Keep buildings cool as it gets hotter

Keep buildings cool as it gets hotter

In most of the MENA and the Gulf region, we reach for the A/C control when entering any living or working space. But as we casually flip a switch, we tend not to consider all those carbon emissions caused by machines.  

After years of indulgence and as witnessed by all of the end results, climate change is forcing all to go green by trying to keep buildings cool as it gets hotter. Greening the Global Construction Industry has already engaged in developing new techniques, tools, products and technologies – such as heat pumps, better windows, more vital insulation, energy-efficient appliances, renewable energy and more imaginative design – has enabled emissions to stabilize the past few years.

The above image is of I Love Qatar

 

Keep buildings cool as it gets hotter

Windcatchers in Iran use natural air flow to keep buildings cool. Andrzej Lisowski Travel/Shutterstock

 

Keep buildings cool as it gets hotter by resurrecting traditional architectural techniques – podcast

By Gemma Ware, The Conversation and Daniel Merino, The Conversation

The Conversation Weekly podcast is now back after a short break. Every Thursday, we explore the fascinating discoveries researchers are using to make sense of the world and the big questions they’re still trying to answer.

In this episode we find out how “modern” styles of architecture using concrete and glass have often usurped local building techniques better suited to parts of the world with hotter climates. Now some architects are resurrecting traditional techniques to help keep buildings cool.

From western Europe to China, North Africa and the US, severe heatwaves brought drought, fire and death to the summer of 2022. The heatwaves also raised serious questions about the ability of existing infrastructure to cope with extreme heat, which is projected to become more common due to climate change.

Yet, for thousands of years, people living in parts of the world used to high temperatures have deployed traditional passive cooling techniques in the way they designed their buildings. In Nigeria, for example, people have long used biomimicry to copy the style of local flora and fauna as they design their homes, according to Anthony Ogbuokiri, a senior lecturer in architectural design at Nottingham Trent University in the UK.

But in the 20th century, cities even in very hot climates began following an international template for building design that meant cities around the world, regardless of where they were, often had similar looking skylines. Ogbuokiri calls this “duplitecture”, and says it “ramped up the cooling load” due to an in-built reliance on air conditioners.

Alongside this, there was a massive boom in the use of concrete, particularly after the second world war when the Soviet Union and the US started gifting their cold war allies concrete technology. “It was a competition both to discover who actually mastered concrete and who was better at gathering the materials, the people and the energy to make concrete,” explains Vyta Pivo, assistant professor of architecture at the University of Michigan in the US. But too much concrete can contribute to the phenomenon of urban heat islands, where heat is concentrated in cities. Concrete is also a considerable contributor to global carbon emissions.

Some architects and researchers are working to rehabilitate and improve traditional passive techniques that help keep buildings cool without using energy. Susan Abed Hassan, a professor of architectural engineering at Al-Nahrain University in Baghdad, Iraq, focuses a lot on windcatchers in her work, a type of chimney which funnels air through houses to keep them cooler in hot climates. She’s now looking at how to combining underground water pipes with windcatchers to enhance their cooling effects.

Listen to the full episode to find out about other techniques being used to keep buildings cool without relying on air conditioning.

This episode was produced by Mend Mariwany, with sound design by Eloise Stevens. The executive producer was Gemma Ware. Our theme music is by Neeta Sarl. You can find us on Twitter @TC_Audio, on Instagram at theconversationdotcom or via email. You can also sign up to The Conversation’s free daily email here. A transcript of this episode is available here.

You can listen to The Conversation Weekly via any of the apps listed above, download it directly via our RSS feed, or find out how else to listen here.The Conversation

Gemma Ware, Editor and Co-Host, The Conversation Weekly Podcast, The Conversation and Daniel Merino, Assistant Science Editor & Co-Host of The Conversation Weekly Podcast, The Conversation

Read the original article.

The Conversation

Saudi crown prince unveils design for NEOM’s . . .

Saudi crown prince unveils design for NEOM’s . . .

Saudi crown prince unveils design for NEOM’s . . .

Saudi Arabia’s crown prince and chairman of the NEOM board of directors Mohammed bin Salman has announced the designs of ‘The Line’, a 170 kilometres long smart linear city.

According to the crown prince, the designs of The Line will embody how urban communities will be in the future in an environment free from roads, cars and emissions. The city will run on 100 percent renewable energy and will prioritise people’s health and well-being over transportation and infrastructure as in traditional cities. It will also put nature ahead of development and will contribute to preserving 95 percent of NEOM’s land.

Last year, the crown prince launched the initial idea and vision of the city that redefines the concept of urban development and what cities of the future should look like.

“We cannot ignore the livability and environmental crises facing our world’s cities, and NEOM is at the forefront of delivering new and imaginative solutions to address these issues. NEOM is leading a team of the brightest minds in architecture, engineering and construction to make the idea of building upwards a reality,” said the crown prince.

Saudi crown prince unveils design for NEOM’s . . .

He added, “NEOM will be a place for all people from across the globe to make their mark on the world in creative and innovative ways. NEOM remains one of the most important projects of Saudi Vision 2030, and our commitment to delivering The Line on behalf of the nation remains resolute.”

The city’s design will be completely digitised, and the construction industrialised to a large degree by significantly advancing construction technologies and manufacturing processes.

The Line, which is only 200 metres wide, 170 kilometres long and 500 metres above sea level, will eventually accommodate 9 million residents and will be built on a footprint of 34 square kilometres, reducing the infrastructure footprint of the city.

Further into The Line’s design, NEOM revealed that the city will be designed with the concept referred to as Zero Gravity Urbanism in mind. The idea of layering city functions vertically while giving people the possibility of moving seamlessly in three dimensions (up, down or across) to access them. Unlike cities with just tall buildings, this concept layers public parks and pedestrian areas, schools, homes and places for work, so that one can move effortlessly to reach all daily needs within five minutes.

The Line will also have an outer mirror façade, allowing it to blend with nature, while the interior will be built to create extraordinary experiences for people living within the city.

Link to ITP.net

Read the latest here: ‘Revolution in civilisation’: Saudi Arabia previews 170km mirrored skyscraper offering ‘autonomous’ services

.The featured image above is credit to Rojgar Samachar

 

The art of designing energy efficiency

The art of designing energy efficiency

The art of designing energy efficiency

Nareg Oughourlian, managing Director of Commercial at Alpin Limited, with a background in Mechanical Engineering.

Energy efficiency: Rome was not built in a day, or so the saying goes. In November 2021, the UAE pledged to achieve net-zero emissions by 2050 and, in doing so, became the first Gulf state to commit to a timeline to decarbonise its economy and fully reach net-zero greenhouse gas emissions.

Not that this happened out of the blue; the UAE has been heavily financing clean energy projects such as Masdar, Sustainable City, and the Barakah nuclear plant for over 15 years, inexorably pushing the sustainability envelope in the region and worldwide.

Internationally recognised guidelines require most companies to decarbonise 90-95% of CO2.

The country has always been known for its sky-high ambitions and impressive success rate, of that there is little doubt. However, the net-zero target marks a real turning point in the way things are done in the UAE and, more importantly, sets up a challenging and exciting target. It requires an exact drive for the future, challenged only by the limitations of sustainable development.

The previously held reliance on oil is changing, and the region is shifting towards alternative options. Shifting towards an ecological mindset remains at the core of any decisions that need to be made moving forward. The UAE is proudly leading the way in the region alongside the Kingdom of Saudi Arabia.

Following the pledge to reduce emissions at the 2015 Paris agreement, many countries fell through on the promise to achieve short-term goals, but structurally altering the policies of a nation takes time, and changes are slowly and surely being made across the globe. In the UAE, winning the bid to host the COP28 global climate talks in 2023 further cements the seriousness and gravity of the 2050 target and, amongst other things, the future of green buildings and the built environment in the region.

The art of designing energy efficiency

Energy efficiencies and net-zero goals

Net-zero emissions are essentially focused on maintaining a balance between the greenhouse gases created and the amount that are taken out. In addition to reducing carbon emissions, there is also reliance on carbon offsetting or carbon removal.

Internationally recognised guidelines require most companies to decarbonise 90-95% of all CO2 emissions through internal abatement options to reach net-zero. For the remaining 5-10% of emissions, qualifying neutralisation activities can be used. Those neutralisation activities are not referred to as offsets, but instead include only activities that directly pull carbon out of the atmosphere, which can be done through Direct Air Capture, bioenergy with carbon capture and storage, improved soil and forest management, and land restoration. This is a contrast to the term ‘zero carbon,’ which concentrates on reducing existing carbon emissions to zero.

It is a well-known fact that the construction industry is a leading cause of C02 emissions, with 39% of global CO2 emissions attributed to building and construction. This means that any small changes within the industry can enormously impact the environment and climate change.

So, how can buildings reduce their impact on the environment? The immediate answer to these questions lies within the innovation of Low and net-zero Energy and Carbon Strategies. A net-zero building produces as much energy as it consumes on an annual basis. This energy balance is propped up by maintaining energy efficiency by the effective design of building operations.

 

Factory-made homes cut carbon emissions by 45%

Factory-made homes cut carbon emissions by 45%

Construction Enquirer estimates that Factory-made homes can cut carbon emissions by 45%.  It is by Aaron Morby.
Shouldn’t countries of the MENA region especially those where housing development is intense, get any inspiration from the idea of factory-made homes cutting carbon emissions by 45%?
Anyway here is:

Factory-made homes cut carbon emissions by 45%

Housing construction using volumetric modular systems can produce 41-45% less carbon dioxide emissions than traditional methods of building homes.

Substantial embodied carbon emissions savings were unearthed by academics from Cambridge University and Edinburgh Napier University in a study on a high-rise and a mid-rise modular scheme in London.

The buildings totalling 879 homes were delivered by Tide Construction using its modular system. University academics found that 28,000 tonnes of embodied carbon emissions were saved from construction – the equivalent of the CO2 absorbed by 1.3m trees in a year.

(l-r)44 and 38 storey George Street in Croydon, now known as Ten Degrees and The Valentine in Gants Hill, London Borough of Redbridge were measured

This is well ahead of industry targets and shows a switch to modular construction could radically reduce the carbon footprint associated with the UK government’s ambition to build 300,000, better quality homes.

Embodied carbon, the CO2 produced during the design, construction and decommissioning phases of a development, is slashed because buildings require lower volumes of carbon-intensive products such as concrete and steel.

The report, “Life Cycle Assessments of The Valentine, Gants Hill, UK and George Street, Croydon, UK” also shows emissions were lower because indirect carbon emissions from deliveries and on-site workers are reduced.

Dr Tim Forman, senior research associate at University of Cambridge, said: “Buildings are responsible for approximately 40% of global energy-related carbon emissions, and there is an urgent need to reduce the carbon intensity of construction and buildings in use.

Factory-made homes cut carbon emissions by 45%“As buildings become more energy efficient in operation, reducing the carbon associated with construction — including the production and transportation of materials and site activities – and their end of life is becoming increasingly significant.

“This study underscores the fundamental importance of quantifying carbon in construction and across a building’s life cycle.”

Professor Francesco Pomponi of Napier University, said: “This study is a truly comprehensive and robust life cycle assessment of the modular solution.

“The analysis of two residential buildings was conducted in accordance with the latest carbon assessment guidelines, and analysis was based on conservative assumptions and a careful selection of data inputs.

“While further studies should be completed to deepen our understanding, the research makes a compelling case for the embodied carbon-saving benefits of modular construction.”

 

%d bloggers like this: