This simple and smart solution could solve cities’ extreme heat problem

This simple and smart solution could solve cities’ extreme heat problem

Advertisements

In the MENA region, where shading, because of the prevailing climate, has been for millennia and still is one of the most important architectural elements for all built structures of the past, this simple and smart solution could solve cities’ extreme heat problem exposure.

The above-featured image is for illustration and is credit to TENSILE FABRIC SHADE

 

This simple and smart solution could solve cities’ extreme heat problem

Gensler spent three years researching how to mitigate extreme heat in vulnerable communities.
[Photo: courtesy Gensler]

Three years ago, the community impact team at the global design, architecture and planning firm Gensler set out to find answers to a question that rises to the very top of every architect’s mind when a heat wave sweeps over a city: What is the fastest, cheapest way to cool down our cities? Or as Amanda Stone, Gensler’s research manager and community impact specialist, put it: “How can we design a design process to create solutions for the built environment that would combat extreme heat?”

The answer Gensler came up with—an adaptable shading structure that can be configured to fit different kinds of public spaces—is by no means a silver bullet that will help cool cities everywhere in the world. But it is worth dwelling on the process that informed it, which could (and should) become a blueprint for any designer or urban planner working with local communities.

[Image: courtesy Gensler]

After receiving three internal research grants to more deeply explore the question, the Gensler team got to work, but it found that answering Stone’s original prompt—which puts an emphasis on the process, not the output—was too broad and complex to come from only one team. And so, it was circulated across Gensler’s broader network of designers and researchers, who then tapped into their own networks in search of community partners who may want to participate.

One of those communities was in the Costa Rican city of Curridabat, which has been suffering the consequences of climate change for years. Paula Badilla, sustainability specialist at Gensler’s Costa Rica office and regional resilience leader for Latin America, explains that Curridabat already had a strong climate action plan and had been measuring things like its heat vulnerability index, urban heat island effects and flood risk across the municipality. But the team didn’t simply rely on those datapoints to inform the design process—they actually asked residents where they felt the hottest.

[Photo: courtesy Gensler]

Perhaps unsurprisingly, the heat maps and residents’ responses didn’t always match, so in Curridabat, the community chose the final three locations based on their own experiences of the city: right outside a human development center, close to a sports field, and in a skatepark with one lone tree.

[Photo: courtesy Gensler]

In those three locations, the team developed a brief for a shading structure, which they turned into an internal competition to design what it would look like. More than 80 people participated across Gensler’s Latin American offices. The winning design ticked all the boxes: it was modular and could therefore be accommodated to fit all tree locations; it was easy enough for the community to build it (and feel a sense of ownership in the process); and it could be made with pretty much any locally found materials—in this case bamboo, rope and canvas. As a bonus, it could also provide more than just shade: residents could use the canvas as a projection screen, or replace it altogether with art, or a trellis for ivy.

https://images.fastcompany.net/image/upload/w_596,c_limit,q_auto:best,f_webm/wp-cms/uploads/2023/09/i-1-90947083-costa-rica-heat.gif

[Image: courtesy Gensler]

To measure the impact the structure will have on the community and how they experience heat, the team is planning to install humidity and temperature trackers on all three structures, then will monitor them over the next three months. They’re also hoping to install CCTV-like cameras to understand who is using the structures (children? teens? parents?) and what they’re using them for. They could, of course, survey residents in a few months, but as project manager Ana Thomas notes: “When you ask people, they tell you things you want to hear, but we need the right information about how they really feel.”

Either way, the findings will not only inform future iterations, but also serve as validation for the community. “The one good thing that I have seen in terms of what really works is knowledge sharing,” says Stone. “It’s gathering the data, gathering the best practices, and sharing those with community members, not keeping it insular.”

Are we smart enough for smart cities?

Are we smart enough for smart cities?

Advertisements

The above-featured image is for illustration and is credit to 6gworld.com.

“One of the biggest threats is smart cities’ vulnerability to cyberattacks. This is because using large and connected networks gives cybercriminals more entry points and the perfect opportunity to jump from one exposed system to the next.

Are we smart enough for smart cities?

29 August 2023

SMART cities are becoming a reality rather than a concept, and integrating technology into everyday infrastructure has become a norm.

They present local authorities with a vast number of opportunities, including data-driven decision-making, enhanced engagement between citizens and the government and a reduced environmental footprint.

 

As with any new technology, there are risks to consider when developing smart cities.

One of the biggest threats is their vulnerability to cyberattacks. This is because using large and connected networks will give cybercriminals more entry points and the perfect opportunity to jump from one exposed system to the next.

While we should not let fear get in the way of innovation, it is essential that we adequately prepare ourselves with robust security protocols.

Challenges facing smart cities

Smart cities face unique challenges when it comes to cyber security. Networks are used by public and private entities, individuals and thousands of IoT (Internet of Things) devices each day.

The massive amount of data exchanged across these networks require a stringent security strategy. Some of the main challenges include:

Connected devices: A multitude of IoT devices that control everything from CCTV and traffic light management to organisations’ personal and financial data can be connected to a network at any one time. In theory, this sounds ideal for seamless communication and management, but in practice, they offer hackers thousands of potential entry points to launch an attack.

Automation of infrastructure operations: Automation offers numerous advantages across various functions within smart cities, reducing the need for direct human control over such operational systems. However, the proliferation of sensors can result in a greater number of connections to oversee and regulate. These connections can become vulnerable points susceptible to compromise.

Sub-standard data management processes: Data is at the heart of any smart city and is critical to everyday operations. However, many lack the correct processes to ensure this information is managed safely and securely. If a database is not policed correctly, it can be simple for hackers to target, which can lead to sensitive data being leaked, stolen or compromised.

 

Risks from ICT supply chain and vendors: We know the risks posed by supply chains and third parties. These were particularly evident during the recent zero-day vulnerability found in file transfer software MOVEit, which was subsequently exploited as part of a large-scale ransomware attack. Hackers continue to attack the weakest links, making smart infrastructure systems an appealing and lucrative target for them. To combat this, we need to adopt and adhere to secure-by-design and default practices to minimise these risks.

Outdated technology: Many cities have infrastructure and networks built on outdated technology, which leaves them susceptible to cyberattacks. Ensure systems are up to date with the latest software updates and security patches. Technology is central to the success of any smart city, and having resilient systems is a priority.

Inefficient security: Being linked directly to outdated technology, having inefficient security protocols in place can expose smart cities to malicious threats. This can leave individuals and organisations vulnerable to data breaches, identity theft and loss of sensitive information. Protecting existing infrastructure with robust security measures can prevent a potentially disastrous breach.

How do we ensure that the safety, security and privacy of those who live and work in smart cities are not compromised?

Build cyber resilience

Research indicates that by 2024, the number of wide-area network smart city connections is projected to surpass 1.3 billion. The level of complexity within these digital infrastructures is only increasing, which means any digital services implemented by a government or organisation are vulnerable to cyberattacks.

To realise their potential, smart cities need to find an effective balance between managing risk and enabling growth.

Building resilience to protect a smart city against these attacks is key. The starting point should be developing a cyber security strategy that maps out the broader objective of the smart city. This will help mitigate risks arising from the interconnectedness of processes and systems.

Part of any effective strategy should be to assess current data, systems and cyber defences to help give an idea of the current posture and quality of infrastructure.

Creating a formal relationship between cyber security personnel and those in governance of data is also vital. This will create an agreed approach to cyber security between all parties.

This means all stakeholders should work together to ensure that data that is being exchanged is secure across the networks. The policies put in place will mature alongside a city’s cyber strategy and add transparency to processes.

Finally, building strategic partnerships to help address the cyber security skills shortage is key to any successful security strategy. This is a good way to develop skills and increase the knowledge base, which in turn will bolster the overall security posture and resilience.

Get smart and be proactive

Smart city technologies need to adopt a proactive methodology to ensure cyber security risks are at the forefront of the planning and design of technologies.

Being “secure by design” is strongly recommended as a defence-in-depth approach. There may be some legacy infrastructure connecting to the smart infrastructure, and this may require a redesign to make secure connectivity and integration possible.

Hackers will continue to exploit vulnerabilities. An overwhelming number of cyberattacks against businesses can be avoided if supply chains and third-party security are taken seriously.

Attackers are quick to exploit vulnerabilities in well-known products. Invest in resources to help combat the everyday struggle of security patches and updates.

Operational resilience is the cornerstone of smart city technology implementation. To make sure organisations are well prepared, contingencies should be put in place for different types of incidents, which can have operational impact or cause disruption.

Autonomous functionality and isolation tools should exist to help minimise disruption.

Risk, privacy and legality all play an important role in smart cities, making sure data that is collected, stored and processed are in accordance with regulations.

Leaders, developers and business owners think that securing cyber risk within their smart city is a one-time objective. However, it is an ongoing and evolving process that can make a difference between a major breach or major growth.

The writer is the lead security engineer at Check Point Software Technologies.

Read more on The Sundaily.my.

.

.

 

How European Smart Cities are Tackling Climate Change

How European Smart Cities are Tackling Climate Change

Advertisements

 

  
The above-featured image is for illustration and is credit to The Times 

The Green Revolution: How European Smart Cities are Tackling Climate Change

The Green Revolution is in full swing across Europe as smart cities rise to the challenge of tackling climate change. These urban areas, equipped with advanced technology and innovative solutions, are leading the charge in reducing carbon emissions and promoting sustainable living.

In the heart of Europe, cities are harnessing the power of technology to create a more sustainable future. They are integrating digital technology into urban infrastructure to improve the quality of life for their residents while simultaneously reducing their environmental impact. This is achieved through a variety of methods, including the use of renewable energy sources, efficient waste management systems, and advanced transportation solutions.

One of the most notable examples of this green revolution is Copenhagen, Denmark. The city has set an ambitious goal to become carbon neutral by 2025. To achieve this, Copenhagen has implemented a wide range of initiatives, such as the installation of wind turbines, the promotion of cycling as a primary mode of transportation, and the creation of green roofs to absorb rainwater and reduce heat.

Similarly, Stockholm, Sweden, is making strides in its quest to become fossil fuel-free by 2040. The city has invested heavily in renewable energy, particularly in the form of biofuels generated from waste. Stockholm also boasts an extensive public transportation system that runs largely on renewable energy, further reducing the city’s carbon footprint.

In Spain, the city of Barcelona is leveraging the power of technology to create a more sustainable urban environment. The city has implemented a smart grid system that allows for more efficient energy use and distribution. Additionally, Barcelona has introduced a comprehensive waste management system that includes the use of sensors to monitor waste levels and optimize collection routes.

Meanwhile, in the Netherlands, the city of Amsterdam is pioneering the use of electric vehicles. The city has installed numerous electric vehicle charging stations and offers incentives for residents to switch to electric cars. Amsterdam also encourages the use of bicycles and public transportation, reducing the reliance on fossil fuel-powered vehicles.

These European smart cities are not only reducing their own carbon emissions but also setting an example for other cities worldwide. They demonstrate that it is possible to integrate advanced technology into urban infrastructure in a way that improves the quality of life for residents while also reducing environmental impact.

However, the green revolution is not without its challenges. Implementing these changes requires significant investment and planning. Cities must also work to ensure that these advancements are accessible to all residents, regardless of income level. Despite these hurdles, the progress made by these European smart cities is promising.

The green revolution in European smart cities is a testament to the power of innovation and technology in the fight against climate change. By harnessing renewable energy, promoting sustainable transportation, and implementing efficient waste management systems, these cities are making significant strides towards a more sustainable future. As the world continues to grapple with the realities of climate change, the lessons learned from these smart cities will be invaluable in shaping our global response.

In conclusion, the green revolution is transforming cities across Europe, turning them into bastions of sustainability and innovation. These smart cities are leading the way in the fight against climate change, proving that with the right technology and forward-thinking policies, a sustainable future is within our grasp.

.

.

 

 

Exploring the Intersection of AI and Sustainable Architecture

Advertisements

The image above is for illustration and credit to GettyImages.

AI and the Built Environment: The Next Generation of Design Solutions

Exploring the Intersection of AI and Sustainable Architecture

Artificial intelligence (AI) has been making waves in various industries, and it’s no surprise that it’s now finding its way into the world of architecture and design. As we strive to create more sustainable and efficient buildings, AI has the potential to revolutionize the way we approach the built environment. By exploring the intersection of AI and sustainable architecture, we can unlock the next generation of design solutions that will help shape the future of our cities and communities.

One of the most significant ways AI can contribute to sustainable architecture is through the optimization of building design. Traditionally, architects and engineers have relied on their experience and intuition to create energy-efficient buildings. However, AI algorithms can analyze vast amounts of data and consider numerous design variables to identify the most sustainable and cost-effective solutions. This data-driven approach can lead to more innovative designs that minimize energy consumption, reduce waste, and lower the overall environmental impact of buildings.

For example, AI can be used to optimize the orientation, shape, and size of a building to maximize natural light and minimize heat gain. This can result in a more comfortable indoor environment while reducing the need for artificial lighting and air conditioning. Similarly, AI can help architects select the most appropriate materials and construction techniques to improve a building’s thermal performance and reduce its carbon footprint.

Another area where AI can make a significant impact is in the design of urban environments. As cities continue to grow and urban populations increase, there is a pressing need to create more sustainable and livable urban spaces. AI can be used to analyze complex urban systems and identify the most effective strategies for improving air quality, reducing traffic congestion, and promoting walkability and public transportation. By using AI to inform urban planning decisions, we can create more sustainable and resilient cities that are better equipped to face the challenges of the future.

In addition to optimizing design, AI can also play a crucial role in the ongoing management and maintenance of buildings. By integrating AI with building management systems, it’s possible to monitor and analyze the performance of a building in real-time. This can help identify inefficiencies and potential issues before they become significant problems, allowing for more proactive maintenance and reducing the overall environmental impact of a building throughout its lifecycle.

Furthermore, AI can be used to create more responsive and adaptive buildings that can adjust to changing conditions and occupant needs. For instance, AI-powered systems can learn from occupants’ behavior and preferences to optimize lighting, heating, and cooling, resulting in a more comfortable and energy-efficient environment. This level of personalization can not only improve the overall user experience but also contribute to greater sustainability by reducing energy waste.

As we continue to explore the intersection of AI and sustainable architecture, it’s essential to consider the ethical implications of these emerging technologies. While AI has the potential to revolutionize the built environment, it’s crucial to ensure that these advancements are used responsibly and equitably. This includes addressing issues related to data privacy, algorithmic bias, and the potential displacement of human workers in the design and construction process.

In conclusion, AI offers a wealth of opportunities for creating more sustainable and efficient buildings and urban environments. By harnessing the power of AI, architects, engineers, and urban planners can develop innovative design solutions that minimize environmental impact, improve building performance, and enhance the overall quality of life for occupants. As we continue to explore the intersection of AI and sustainable architecture, we can look forward to a future where our built environment is smarter, more resilient, and more sustainable than ever before.

 

.

.

 

AI and Smart Cities–Improving Urban Life

Advertisements
AI and Smart Cities are they meant for Improving Urban Life?  Let us see what AI could bring to Smart Cities.
The image above is credit to World Economic Forum.
.

AI and Smart Cities–Improving Urban Life

By Ale Oluwatobi Emmanuel

The world as we have it today is not static. At the snap of a finger, there’s a new innovation in town that everyone makes a fuss about. Over the years and through generations, we’ve witnessed a series of disruptions in various sectors that have impacted our lives and activities.

You’d want to see what the first generation of computers in the 19th century looked like when they were invented. Take your time. They took up the size of an entire room.

Here is the question–who would have thought the same large computers could be compressed into smaller sizes? Today, with a size of 0.3 millimeters, the Michigan micro mote boasts of being the most miniature computer, and guess what? That’s a size smaller than a grain of rice.

What’s more? As humans, there is an exciting future ahead, and we’d have it with artificial intelligence at our beck and call. Recently, you’ve noticed how AI is disrupting virtually all sectors worldwide. Talk of banking, transportation, health, military, and even sports.

As we see with other sectors, our city centers are included in these disruptions, especially now that urban areas are getting more crowded and complex. It’s time to make our cities smart with AI.

What are smart cities, and how do we make our cities smart with this unique technology? There is no better time to have the discussion. Let’s dive in.

Smart Cities: What exactly are they?

If you’ve ever wondered–everyone is talking about smart cities, what’s the fuss about them? A city is smart if it incorporates technology and other digital solutions for its processes.

A smart city would utilize information and communication technologies to improve the quality of life of the citizens and the way the government serves the people.

It utilizes innovative technologies for a more interactive and responsive city administration, improved water supply, innovative urban transport networks, waste management, and many more.

A city is termed smart not by the number of smart technologies it’s got but by how it has effectively used these technologies to positively impact its citizens and drive economic growth.

Here is the catch– Artificial intelligence has a huge potential to access the activities of urban dwellers to bring about urban planning and management.

Talk of handling data from different sources to gain insights for effective municipal operations. Guess what? It also reduces associated expenses. Let’s assess some more use cases of AI in Smart cities.

Artificial Intelligence and Smart City Infrastructures

According to research conducted by the World Bank, 56% of the world’s population, which is about 4.4 billion people, live in cities. By 2050, this figure is expected to have doubled its current size.

At that point, 7 out of 10 people you meet would live in the city. Hence, there is a need to leverage artificial intelligence to enhance infrastructure and create more sustainable and livable urban environments.

For example, in public transit, cities with vast transit infrastructure have much to gain regarding making their processes seamless.

With the power of AI, commuters using major routes can offer real-time information through hands-on devices to communicate the situation of things on the road. This can enable other commuters to decide the ways they’d be taking faster.

As a case study, Dubai initiated a smart city project to monitor bus drivers’ condition, contributing to a 65% reduction in accidents caused by fatigue and stress.

In the same vein, AI can enhance the safety of power grids to improve performance management. Smart grids, such as generation plants, can be created backed by computer technology.

Moreso, prediction models can be set up on these grids to make smart meter readings of large quantities of data. They can also forecast the demand and price at given moments.

Artificial Intelligence and Smart City Services

Today, there is a need for cities around the world to provide improved delivery and quality of services through continuous monitoring of residents. For example, an AI-driven system in Los Angeles monitors air quality in real-time.

This system helps the city reduce air pollution and improve public health. It uses data from air quality sensors to prompt city officials about air pollution hotspots. It helps guide citizens to safe travel places.

Below are some other service sectors experiencing the disruptions of artificial intelligence.

  • Customer Service:

AI is disrupting customer service. Natural language processing (NLP) algorithms in chatbots are now available. The chatbots let customer support executives work effectively by getting information about customers’ issues.

So, it means if you own a business that relies majorly on customer service, you can hire an AI developer that can build chatbots to meet your specific business needs. Due to the accuracy of chatbots, there are speculations that they’d take over customer service roles, but only time will tell.

  • Health care:

In the healthcare service sector, introducing AI can bring about predictive healthcare. By leveraging predictive analytics, AI can help doctors make accurate decisions about the health of their patients. Asides from this, AI can also help streamline the analysis of scan results via image recognition. Doctors diagnose symptoms more accurately and effectively. With the rise of IoT-enabled embedded devices, they can remotely monitor their patient’s health conditions.

  • Banking:

AI is a valuable tool in a field such as the financial sector, which is prone to fraudulent activities. Artificial intelligence helps banks automate processes that are typically carried out by humans, reducing the time and effort it takes if done manually. Interestingly, AI can also help track customers’ credit history. AI’s predictive technology shows the likelihood of an individual not paying a loan back based on the information it analyzes.

That way, financial institutions and other loan services can streamline the process of getting new customers likely to repay their loans.

  • Transportation

Autonomous vehicles are here to stay, and they’re powered by AI. Who would have thought there’d be a time when cars could navigate their ways without human control? Well, it’s happening now. Kudos to Tesla and other big technology companies. Autonomous vehicles can also be used for deliveries and for transporting goods. Self-driving trucks can deliver packages more efficiently. We already see Tesla’s AI-powered Semi automobile do well in this regard.

Artificial Intelligence–The Tool for a Smarter World

No doubt, it is a visible phenomenon that the world of technology and innovation constantly changes. It’s exciting to let you know that we’re still at the early stage of the deployment of AI. Although we’ve seen its applications in diverse sectors, its long-term benefits will start unfolding. If you’re reading this now, you’re lucky. You must begin to adapt and position well for a new world driven by artificial intelligence.

Moving forward, a lot of changes will happen. From lifestyle changes to improvements in societal processes and operations. Welcome to the world of AI.

.

Read original TechDay article.