What role can blockchain play in developing smart cities

What role can blockchain play in developing smart cities

Advertisements

What role can blockchain play in developing smart cities and the IoT when growing cities are a critical fact of the 21st Century representing the greatest challenge . . . 

The author states that, for instance, by ”using blockchain, citizens could receive tokens for waste disposal.”

.

.

 

 

Smart cities are urban areas that use advanced technologies such as sensors, data analytics, and the Internet of Things (IoT) to improve the quality of life for their citizens. As these kinds of cities grow and become smarter, managing the vast amounts of data generated by IoT devices raises concerns about privacy and security. Blockchain technology can provide a secure and transparent way to manage data and administrative processes and improve safety. It can play a significant role in developing smart cities and the IoT.

How can Blockchain help develop Smart Cities and IoT?

1. Secure Data Management

Imagine a smart city with sensors that collect data on traffic, energy consumption, and air quality. All this data is like puzzle pieces that can help city planners make better decisions to improve the city. However, they need to ensure that the data is secure and only accessible by authorized people. Blockchain can help with that by creating a transparent and secure data management system. It’s like having a locked box where only authorized people have the key. This way, they can track who owns the data and how it’s being shared between parties like the city government, businesses, and citizens.

2. Decentralized Energy Grid

Let’s say you are a city government official responsible for waste management. You want to incentivize citizens to dispose of their trash and recycle properly, but you’re unsure how to track and reward individual efforts. Using blockchain technology, citizens could receive tokens for proper waste disposal, which they could then exchange for rewards like discounts at local businesses or even tax credits. This creates a more efficient and transparent way to incentivize good behavior and promote sustainability in the city.

3. Digital Identity Management

Blockchain can be used to create a safe and reliable way for citizens to prove their identity, reducing the chance of someone stealing or committing fraud. For example, blockchain technology can create digital IDs that allow citizens to vote or access government services, making these processes faster and more efficient.

4. Smart Contract Integration

Blockchain smart contracts can automate many aspects of city management, including traffic management, waste management, and emergency response. This could reduce costs, improve efficiency, and enhance citizen safety.

5. Public Records Management

Blockchain technology can make public records like property titles and business registrations more secure and transparent. This can reduce bureaucratic processes and enhance the accuracy and accessibility of public records. For instance, when buying a property, the buyer and seller can use blockchain to automate the transfer of ownership, making the process more secure and transparent.

Conclusion

Blockchain technology has the potential to play a vital role in the development of smart cities and the Internet of Things. By providing secure and transparent data management, decentralized energy grids, digital identity management, smart contract integration, and public records management, blockchain could help to create more efficient, sustainable, and livable cities for all.

.

.

How Smart Cities are Transforming Urban Living

Advertisements

Throughout the world, cities are increasingly looking to digitize services or become more technology-forward. In so doing, the Intersection of AI and IoT is an obligatory passage resulting in the author wondering How Smart Cities are Transforming Urban Living

A Smart City is an urban area that utilizes advanced technologies, data analytics, and interconnected systems to optimize urban processes, infrastructure, and services. By integrating data collection and communication technologies with the Internet of Things (IoT), a Smart City can improve its citizens’ efficiency, sustainability, and overall quality of life while reducing environmental impact and promoting economic growth.

The image above is of IStock.

.

The Intersection of AI and IoT: How Smart Cities are Transforming Urban Living

KEY TAKEAWAYS

The combination of AI and IoT technologies is revolutionizing the way we live and work in smart cities, making them more efficient, sustainable, and livable. Real-time data analysis from multiple devices is simplifying decision-making and administrative tasks, optimizing resource utilization, and improving public safety. The smart city concept uses technology to improve the quality of life, including transportation, solid waste management, pollution reduction, sustainable communities, irrigation, public safety, traffic management, and healthcare, among others. Cities like Singapore, Amsterdam, Barcelona, and Dubai are leveraging the benefits of AI and IoT technologies to transform urban living.

Artificial Intelligence (AI) and the Internet of Things (IoT) technologies are being used together to leverage each other’s advantages. The interconnection of various data-generating devices, such as sensors, computers, vehicles, smartphones, buildings, and software through the Internet, has revolutionized how we live today.

The interplay of AI and IoT technologies has completely transformed the way we interpret and analyze the massive amount of data that is continuously generated by IoT devices with the help of AI techniques.

As a result, decision-making, optimizing industrial processes, making predictions, and identifying anomalies in industrial settings becomes easier than ever. Similarly, AI and IoT technologies are being used together in smart city applications to improve urban infrastructure and the quality of life.

Understanding smart cities

The idea of smart cities is described below, and various constituent components and examples of smart cities are also provided.

Defining smart cities

Before delving into how AI and IoT are transforming smart cities, it is important to understand what a smart city is and how it functions. The concept of smart cities emerged after the term “pervasive computing” started gaining popularity in the first decade of this century. Pervasive computing simply refers to “computing everywhere”. Therefore, pervasive computing and smart cities are closely related in several ways.

We can define smart cities as urban areas that utilize technology strategically and efficiently to perform day-to-day operations and improve their inhabitants’ quality of life. This includes incorporating technology in every aspect of life to offer better civic services, such as transportation, solid waste management and collection, pollution-free and sustainable communities, irrigation, healthcare, public safety and policing, traffic management, and many others. In a nutshell, “a smart city is an interconnected and technology-enabled sustainable environment designed to improve the standard of living of its residents.”

Components of smart cities

Smart cities comprise a variety of components, each of which is crucial for their functioning. The components include:

  • IoT devices: these include various data-collecting devices, such as sensors, traffic, air quality, energy usage monitoring devices, and so on.
  • Data analytics component: the component is responsible for processing and analyzing the data collected through the IoT devices
  • Communication Networks: are used for data transmission among IoT devices, data analytics systems, and other infrastructure components.
  • Metropolitan infrastructure and public services: are essential for the functioning of smart cities. Infrastructure includes buildings, roads, and other public areas, which can be transformed through data analytics and IoT. On the other hand, public services can be transportation, healthcare, education, and public safety, which may be improved through AI and data analytics.

Examples of smart cities

Recently, many cities worldwide have started implementing smart technologies to uplift the living standard of their citizens. Some of the cities include SingaporeAmsterdamBarcelona, and Dubai. Singapore’s smart city initiative utilizes IoT data and performs analytics to improve mobility and healthcare services, support businesses, and optimize traffic flows and energy usage. Likewise, Amsterdam, in addition to the ones discussed above, emphasizes sustainable solutions to mobility by providing smart traffic systems and electric charging stations.

Barcelona is not behind the others and also relies on IoT devices and data analytics methods. In particular, smart lighting systems based on motion sensors, green spaces, energy-efficient buildings, smart bike sharing, and waste reduction are among the few initiatives that make Barcelona a smart city. Similarly, automated buses and the urban metro system, smart grids, smart and energy-efficient buildings, smart healthcare, and policing have made Dubai emerge as one of the rapidly developing smart cities. The initiatives, such as Dubai Blockchain Strategy, the Dubai Future Accelerators program, and the Smart Dubai Platform, are pivotal in making Dubai one of the top living choices.

How AI and IoT are transforming urban living?

The intersection of AI and IoT technologies is transforming living and work in smart cities, and their impacts are becoming significant daily. By combining these two technologies, a new era of innovation, efficiency, and sustainability is emerging, which once could have only been dreamt of by humans. Real-time analysis of continuously generated data by multiple devices simultaneously has made decision-making and administrative tasks easier without much human involvement. For example, traffic signals equipped with IoT sensors can monitor traffic flow which can further be analyzed using AI algorithms and consequently can help traffic lights adapt to the traffic situation at a particular intersection in the city.

Likewise, another exciting usage scenario is in the solid waste collection and management domain, where the smart waste bins equipped with IoT ultrasonic sensors can notify about the levels of waste in the bins. AI techniques can schedule pickups, reducing unnecessary trips of waste collection vehicles and the environmental impact. Similarly, in smart buildings equipped with IoT devices, such as sensors, HVAC, lighting, etc., the data analytics techniques, with the help of the current sensor readings and historical data, may direct the control modules to optimize energy usage or predict any failures of the equipment. Moreover, the HVAC systems in smart buildings can be automatically adjusted based on occupancy and outside environmental conditions.

There are numerous advantages to using the two diverse spheres of technology together. Primarily, they result in increased efficiency, optimal resource utilization, reduced human involvement, savings of time and finances, etc. Moreover, sustainability is also vital in smart cities and can be improved through several environment-friendly initiatives. With the help of the sensors installed city-wide, the data about air quality and water usage is collected and analyzed by AI techniques. The data is subsequently used to issue alerts to the authorities of the areas where attention is required, for example, where high pollution levels are in the air or where water is being wasted.

AI and IoT technologies also help improve public safety through real-time monitoring. AI-powered security cameras are used to detect suspicious behavior through continuous surveillance. Similarly, monitoring the infrastructure for possible safety hazards through sensing devices enables timely alerts and quicker responses from the concerned authorities. In addition, greater civic engagement is promoted by providing citizens access to real-time data through various platforms and enabling them to provide decision-making feedback, leading to more impartial outcomes.

Challenges and Limitations of AI and IoT in Smart Cities

Though there are several benefits of integrating AI and IoT technologies in smart cities provides. However, numerous challenges and limitations must be addressed.

  • Device heterogeneity 

A lack of standardization across heterogeneous IoT devices and their communication protocols often results in compatibility issues, thus demanding the standardization of IoT protocols and interfaces for effective device integration and efficient data communication.

  • Data deluge 

The large volumes of data generated by IoT devices demand powerful computing resources and storage capabilities, hence elevating the need for data centers and cloud computing infrastructure.

  • Data security and privacy

Data security is crucial in smart cities due to the risk of cyber-attacks and data breaches, necessitating robust security measures. Moreover, continuous surveillance could also lead to privacy issues.

  • Ethical concerns

Addressing ethical concerns, such as bias introduced by the computational algorithms, may lead to discriminatory outcomes (for example, unfair treatment of certain groups), which is undesirable for equity and diversity in societies.

  • Job displacement and economic inequality 

Integrating AI and IoT in smart cities could lead to job displacement, especially for those who have little technical skills in sectors such as transport manufacturing, or logistics. This may further increase inequality of income and lead to a large number of workers not being adequately supported. Strategies to mitigate negative impacts should be developed in view of the possible impact on workers.

  • Massive investments 

Finally, significant investments are needed to realize smart city initiatives which can be challenging to manage initially.

Conclusion

In conclusion, the intersection of AI and IoT has paved the way for developing smarter and more sustainable cities. From optimizing energy consumption and transportation to enhancing public safety and citizen engagement, these technologies are revolutionizing how we live and interact in urban environments. While some challenges and limitations need to be addressed, the potential benefits of AI and IoT in smart cities are immense and should be exploited for better communities.

.

.

 

AI in Smart Cities

Advertisements

AI in Smart Cities is turning out to be of great help as demonstrated here in an AITHORITY article.

The image above is of Microsoft.

.

AI in Smart Cities: How Innovative Technology is Enabling Smart Cities to Meet Their Sustainability Goals

The evolution of Smart Cities has been inspiring and remarkable to watch. In the recent past, a typical resident might not have found the technical description of a smart city all that enticing, but today, citizens are more aware and more conscious. They are far more concerned about the environment and climatic changes.

Government and civic agencies across various countries, with the help of state-of-the-art artificial intelligence technology, are focusing on reducing carbon footprints, improving infrastructure, and meeting the sustainability goals of smart cities.

Did you know that according to a report by McKinsey Global Institute, ‘Smart Cities’ have the potential to refine the basic quality of life by 10-30%? It can reduce crimes, lower carbon emissions, better health management and improve traffic management and deliver an enhanced quality of life.

McKinsey Global Institute’s report stated that cities house more than half of the world’s population, and another 2.5 billion people are predicted to move there by 2050.

Today, artificial intelligence and the Internet of Things (IoT), the two concepts that have a major role to play in the development of Smart Cities, are better understood.

What are Smart Cities and Where Does Technology Come into Play?

Let’s begin by understanding the definition of a Smart City. Smart Cities are an intelligent culmination of data and digital technology. They are synonymous with intelligent economic and civic infrastructure with minimal carbon footprints.

It ensures that its citizens enjoy cutting-edge technology, utility, and mobility while eliminating bureaucratic red tape. At the end of the day, a Smart City’s ultimate goal is to improve people’s quality of life, simplify living, boost economic growth, and contribute to its long-term development.

 

But, is it enough for cities to just fall under the Smart Cities bracket and do little to meet their sustainability goals? That’d be a very unlikely situation. Smart Cities can only be successful if they are built keeping the people as well as the environment in mind.

According to Unesco,

“A smart sustainable city is an innovative city that uses ICTs (information and communication technologies) and other means to improve quality of life, the efficiency of urban operation and services, and competitiveness while ensuring that it meets the needs of present and future generations with respect to economic, social, environmental as well as cultural aspects.”

AI in Smart Cities

From more accessible, efficient services to lowering people’s overall carbon footprint, the many smart city technologies now available and on the horizon might cut expenses, increase safety, better protect the environment, and improve our quality of life.

Traffic Flow Management

Intelligent Traffic Management systems can help to alleviate traffic congestion by warning vehicles of bottlenecks and delays. Using Deep Learning algorithms, it can predict and reduce traffic, hence lowering carbon emissions. Traffic infraction detection systems and AI-enabled cameras can drastically minimize road accidents.

AI is used to evaluate real-time traffic data from cameras and IoT devices, such as vehicles like cars, buses, and trains. It recognizes patterns in data and decreases safety hazards and reoccurring accidents, as well as controlling traffic light systems.

Artificial intelligence is rapidly transforming the world around us, and smart city technology, such as parking management and traffic control systems, is one of the most effective answers it offers. With the use of artificial intelligence, one may properly forecast the flow of people, cars, and objects at various locations of interconnected transportation networks.

Smart Parking Spots

Parking has always been one of the major concerns for urban residents, and spending even five minutes looking for a parking spot can be overwhelming. Smart parking spots will allow commuters to reserve parking reservations through a mobile app, reducing the amount of time spent looking for parking spots, cutting urban traffic, lessening our carbon footprint, and conserving gasoline.

AI video analytics can detect the number of vehicles and identify parking lines, thus helping in predicting vacant parking spots. This system comes especially handy when a big public event, concert, or game is about to take place and there are high chances of congestion and struggle to park. AI can assist in identifying likely busy regions and recommending the best parking spots. It can assist drivers in avoiding traffic and saving time.

 

By now, several countries are already leveraging intelligent parking systems to help their citizen save time as well as money. The parking system first spots vacant parking and notify through an app or an indicator.  It can also assist in locating available parking spaces in congested places where traffic flow is frequently excessive.

This innovative parking solution collates data from different devices including sensors and cameras. Most of the time, these devices are embedded into the parking lots or are somewhere in proximity to instantly locate vacant spots.

Alternative Transportation

Infrastructure data is truly a blessing. It empowers smart cities as well as different modes of transportation. Today, people have the luxury to opt for alternative transportation like e-bikes, and electric vehicles. Benefit from the usage of 4G, 5G, and IoT sensors to better analyze traffic patterns, trends, and effects through AI, cutting travel time, reducing unproductive idling, and lowering total climate impact.

In electric cars, AI assists in the control of energy consumption, safety, security, and the construction of a pollution-free eco-friendly environment, which is a wish of today’s and tomorrow’s civilizations.

Recently, computer giant Acer launched e-bikes powered by advanced artificial intelligence. The bike, aimed at urban commuters, weighs only 16kg and has been calibrated for “stable and nimble riding,” according to Acer. The intelligent ebiiAssist learns from the rider’s pedaling force, riding circumstances, and chosen level of help to provide a more personalized experience.

Energy Management

Is it even possible to fathom a smart city without thinking of a smart Energy Management System (EMS)? Now the next question is, what is energy management based on? Mostly, it is based on cutting-edge climate and geospatial technology powered by AI and data analytics. They have the ability to improve our reaction to climate change as well as the overall environmental quality of smart cities.

Energy Management System is a software-based solution that assists companies and businesses in monitoring, controlling, and optimizing their energy usage. Some of the top players in the global energy management systems market are IBM Corporation, General Electric Co., Cisco Systems Inc., and Siemens AG.

Consumers and businesses are becoming more conscious of the environmental impact of their actions and are seeking for solutions to lower their carbon footprint. This is driving the use of EMS solutions as a means of reducing energy consumption and meeting sustainability goals. The growing popularity of smart homes and buildings is driving the use of EMS solutions in the building automation market.

According to Vantage Market Research, the global energy management systems market was valued at $36.4 billion in 2021 and is predicted to rise at a compound annual growth rate (CAGR) of 15.8% from 2022 to 2028.

  • Because of their flexibility, scalability, and cost-effectiveness, cloud-based EMS solutions are gaining popularity. These solutions allow for remote monitoring and control of energy consumption, making it easier for businesses to optimize their energy consumption.
  • MS solutions include the Internet of Things (IoT) and artificial intelligence (AI) technology to enhance energy efficiency and save expenses. IoT sensors can give real-time data on energy consumption, which AI algorithms can analyze and discover areas for improvement.
  • With the growing use of renewable energy sources such as solar and wind power, EMS solutions are being developed to control and optimize their utilization. Integration with smart grids and battery storage systems is required to ensure an efficient and dependable energy supply.
  • EaaS models are gaining popularity, especially in the commercial and industrial sectors. These models enable enterprises to outsource their energy management to third-party providers, who deploy EMS technologies to optimize energy consumption and save expenses.

Water Pressure and Leak Detection 

According to the American Water Works Association, the 237,600 water line breaks that occur in the United States each year cost public water utilities around $2.8 billion.

According to the American Society of Civil Engineers, aging, leaking pipes drain 7 billion gallons every day from our water systems. The World Bank estimated that non-revenue water (NRW) – the cost of water lost due to leaks, as well as standard theft and billing problems – is approaching $14 billion globally.

The World Bank estimated that non-revenue water (NRW) – the cost of water lost due to leaks, as well as standard theft and billing problems – is approaching $14 billion globally.

 

These numbers are worrisome. But, we have smart technologies to fix it. In the past decade, smart water meters have been the highlight of this evolution. Water losses in municipal water systems could be drastically reduced with the help of sensors and modern artificial intelligence (AI) technology.

  • The technique, developed by researchers at the University of Waterloo in partnership with industrial partners, can detect even minor leaks in pipelines. It uses sophisticated signal processing techniques and artificial intelligence software to detect leaks in water pipelines via sound.
  • The audio signals are captured by hydrophone sensors, which may be readily and inexpensively put in existing fire hydrants without the need for excavation or shutting them down.
  • Aside from the economic implications of losing treated water, chronic leaks can pose health risks, cause structural damage, and degrade with time.

Air Quality Prediction and Automated Actions

Air pollution has a negative impact on millions of individuals around the world and global solutions are the only way to address these global issues. Artificial intelligence is a practical technique to dealing with and reducing air pollution. AI can collect sensor and satellite data and assist academics in the blending of climate models.

Let’s take a look at how artificial intelligence-based solutions for cleaner air.

  • Artificial intelligence has the potential to improve data collecting and qualitative measurement. AI can detect patterns in data sets to aid with analysis.
  • AI can forecast future air quality and direct relevant agencies to take the necessary actions ahead of time.
  • Artificial intelligence can provide maintenance insights for sensors and other equipment.
  • AI and IoT provide recommended tools for real-time monitoring of air pollution. AI technology can swiftly and correctly identify sources of air pollution. Smart sensors, for example, can identify the source of a gas leak in a company and effectively apply corrective measures.
  • AI can aid in the reduction of air pollution in the automotive zone. AI technology allows autonomous vehicles to be fuel-efficient. AI-powered traffic signals can potentially help to reduce air pollution. We can utilize machine vision to adjust to traffic flow, reducing driving time.

AI technologies can greatly help government organizations and commercial firms by monitoring air purity levels and alerting personnel if air quality falls below a specific threshold.

  • IBM researchers are collaborating with the Beijing government to use artificial intelligence to combat air pollution and monitor environmental health. Machine learning and cognitive abilities are being used by researchers to increase forecast accuracy. AI can help predict air pollution levels 10 days in advance. Scientists are combining artificial intelligence (AI) technologies to do scenario analysis and take necessary measures such as traffic control, plant shutdowns, and more.
  • Scientists at Loughborough University in the United Kingdom have created an AI-based algorithm that predicts air quality in advance. The model examines sensor data and assists policymakers in understanding the reasons and methods for reducing air pollution.
  • CleanAir. AI is a Canadian IoT firm that provides air filtration for homes and buildings using AI-based technology. The startup employs AI and IoT to provide actionable information on indoor and outdoor air quality, deliver cleaner air, and save energy.

Final Thoughts

A smart city has a wide range of components, and each one has its effects on the quality of urban dwellers. How we live, work, and play will change as smart cities grow and become more connected. From weather monitoring and pollution management to saving energy and water and waste management, Smart Cities may be a work in progress but they are gradually becoming the epitome of urban living.

[To share your insights with us, please write to sghosh@martechseries.com]

Sustainable Cities and their Digital Twins

Advertisements

There is more and more belief that the key to sustainable cities may lie in increasingly sophisticated digital twins. Let us see what Anthropocene has published.

 


The key to sustainable cities may lie in increasingly sophisticated digital twins

Researchers offer the first rigorous analysis “In silico” equivalents of urban areas as a powerful tool for sustainable development
March 14, 2023

Dynamic computer models of cities known as ‘digital twins’ could help drive sustainable development across the world’s urban areas, an international team of authors argues in the journal Nature Sustainability.

Digital twins are more than just static models. They incorporate near-real-time data from sensors and other sources to produce “virtual replicas,” the authors explain—“in silico equivalents of real-world objects.”

The concept of digital twins first arose in manufacturing, and they are primarily used in product and process engineering. But the models have also been employed in fields ranging from personalized medicine to climate forecasting, at scales from the molecular to the planetary.

Many researchers have posited that digital twins will be a powerful tool for sustainability efforts. But nobody has taken a rigorous look at the benefits and pitfalls of urban digital twins. The new study takes on that task, paying particular attention to the potential for the modeling approach to help achieve the UN Sustainable Development Goals.

Digital twins have a variety of potential benefits in this realm, the researchers say. They can help cities allocate resources more efficiently—design more effective water grids, predict traffic congestion to guide transportation planning, simulate consumer behavior to recommend energy-saving measures, and so on.

In addition, “In silico models provide a virtual space where new clean technologies, which promise resource efficiency but may cause unintended harm, can be tested at a speed and scale that may otherwise be inhibited by the precautionary principle,” the researchers write. For example, they could help cities figure out how to incorporate renewable sources of energy into the grid without compromising reliability.

Digital twins could also help scientists and policymakers to collaborate across disciplines, agencies, levels of government, and geographic distances. And they could aid cities in monitoring and reporting progress on the Sustainable Development Goals or other sustainability aims.

Some of the authors of the paper have been involved in the development of a digital twin for Fishermans Bend, an urban renewal project in Melbourne, Australia. The model includes more than 1,400 layers of both historical and real-time data from public and private sources. More than 20 government agencies and municipalities are using the model to analyze how proposed buildings will affect sunlight falling on open space and vegetation, forecast tram traffic patterns, and address other planning questions.

Digital twin models are also being used in cities including Zurich, Singapore, and Shanghai to monitor noise and pollution and facilitate urban planning that takes into account population growth and climate change.

But there are pitfalls to the digital twin approach, too. Because they require so much data, advanced computing power, and technological know-how, digital twins have the potential to exacerbate digital divides, especially between high-income and lower-income countries.

What’s more, even the most complex model may fall short in representing the multifarious nature of a real-life city. The data necessary to underpin a successful digital twin may be unavailable, inaccessible, or incompatible with other sources. And the social-science aspects of digital twins are especially poorly understood.

Finally, models can be optimized for the wrong targets. There are inherent contradictions between different Sustainable Development Goals, and programmers have to take care about how outcomes and parameters are prioritized, the researchers say. For whom and by whom are these decisions made—and who’s left out of the process?

To avoid these pitfalls of digital twins—and reap the potential benefits, the researchers recommend that governments and international institutions get involved in bridging digital divides; leaving digital twin technology to the marketplace virtually guarantees that low-resource countries will be left behind.

They also call on those creating and implementing digital twins of cities to pay attention to social and ethical responsibility. “A central question that derives from these issues is: to what extent are those who may be affected by the decisions based on simulation models included in their design and deployment?” they write.

“Interestingly in such instances, digital twins themselves can raise awareness among planners and policymakers of socioeconomic inequalities, thereby becoming instruments of inclusion,” the researchers add.

Source: Tzachor A. et al. “Potential and limitations of digital twins to achieve the Sustainable Development Goals.” Nature Sustainability 2022.

Image: ©ESRI

.

Smart city: Constructing materially smarter cities

Advertisements

A smart city uses digitalisation-supported information and communication technology (ICT) in its diverse operational exercises, shares information and provides better governance.: Constructing materially smarter cities on Elkem.

 


Smart city: Constructing materially smarter cities

In 2050 close to 70 percent of the world’s population is expected to live in cities and the need for efficient infrastructure will increase. Did you know that the materials used on satellites and space applications play a crucial role in enabling smart and safe cities of the future?

There are different definitions of what a smart city actually is. As a general interpretation, however, consensus seems to align around that the term says something about the degree to which traditional networks and services are made more efficient with use of digital and telecommunication technologies – for the benefit of its inhabitants and businesses

The smart cities put data and digital technology to work to make better decisions and improve the quality of life for example by providing commuters with real-time traffic information, an asthma patient with information on high pollution areas or live usage load in city parks.

This is important, as a study by the World Bank has found that for the first time in history, more than half of the world’s population lives in cities. The study estimates that 70 million new residents will be added to urban areas each year, indicating that more than 68 percent of the world’s population will live in cities by 2050.


Smart cities use Internet of  Things (IoT) devices, like sensors, lights, and meters to collect and analyse data. The cities can then use this data to improve infrastructure, public utilities and services, and more.
IoT is the concept of connecting any device to the Internet and to other connected devices (IBM, source).


Source: UN Department of Economic and Social Affairs (2018)

Cities are also important for value creation and according to the World Bank, 72 percent of competitive cities outperformed their countries in terms of economic growth. In other words, we need the cities and their value creation.

A potential part of the solution

The rapid urbanisation will increase demand for services in urban areas exponentially and put pressure on population centres. In this future scenario, efficient, smart cities can represent a part of the solution.

Elkem has delivered metals and materials for the construction sector for several decades and play a key role in how cities are becoming better, smarter and more efficient.

Elkem’s silicon, ferrosilicon and Microsilica® are materials used to enhance properties and reduce emissions in the production of metals and concrete for the construction sector, and Elkem’s silicones are among other things used as sealants for flexible joints between construction materials, as well as for waterproofing windows, doors and facades.

In addition, silicones also have a wide range of usages within electronics.

“The extreme resistance of our materials, combining thermal and fire resistance as well as chemical stability, make silicones materials outstanding for long-term applications, where you either do not want to or cannot change materials frequently. This is the reason why silicones have become the material of choice in aviation, aerospace and automotive industry”, says Yves Giraud, global business manager in Elkem Silicones.

“For example, if you launch a satellite, you will not be able to change and inspect the materials every three years. The materials must be stable over a 15-year period in a very challenging environment. Another example is 5G antennas, which will become increasingly important as smart infrastructure, where Elkem’s material solutions are vital to protect critical functionalities and to reduce the need for maintenance and inspections for our customers”, says Giraud.

Another example is 5G antennas, which will become increasingly important as smart infrastructure, where Elkem’s material solutions are vital to protect critical functionalities and to reduce the need for maintenance and inspections for our customers”, says Giraud. 

Reliable, sustainable and innovative

With increased demand for new energy solutions and smart applications, the role of cables is also becoming more important. To meet demand, manufacturers are looking for safer, more reliable, sustainable and innovative solutions.

Silicone rubber insulated cables provides both heat and fire resistance, and present high mechanical properties. The materials therefore contribute to protecting our lives in the cities.

Another effect of smarter and more efficient cities is that the need for sensors and intelligence gathering equipment will increase. This is relevant, among other applications, on car windows, which ensure that the lights are switched on when it gets dark, or in buildings, enabling exterior doors and gates to automatically open when approached by people.

“We believe smarter cities are one of several drivers that will increase the need for safe products that lasts. The use of silicones in smart application is a great reusable alternative, and is also of significant sustainability value, generating energy and saving CO2 emissions nine times greater than the impacts of production and recycling”, says Giraud.

.

.