AI used to examine construction following earthquakes

AI used to examine construction following earthquakes

SmartCitiesWorld News team informs that AI is used to examine construction following earthquakes in its vital assessment concerning quality, safety and potential risks in its future usage.

The picture above is about how an App helps engineers identify structural issues. Photo courtesy: Build Change

AI used to examine construction following earthquakes

An open-source project hosted by the Linux Foundation with support from IBM and Call for Code will use machine learning to help inform quality assurance for construction in emerging nations.

A new open source machine learning tool has been developed to help inform quality assurance for construction in emerging nations.

Build Change, with support from IBM as part of the Call for Code initiative, created the Intelligent Supervision Assistant for Construction (ISAC-SIMO) tool to feedback on specific construction elements such as masonry walls and reinforced concrete columns.

Structural issues

The aim is to help engineers identify structural issues in masonry walls or concrete columns, especially in areas affected by disasters.

Users can choose a building element check and upload a photo from the site to receive a quick assessment.

“ISAC-SIMO has amazing potential to radically improve construction quality and ensure that homes are built or strengthened to a resilient standard, especially in areas affected by earthquakes, windstorms, and climate change,” said Dr Elizabeth Hausler, founder and CEO of Build Change.

“We’ve created a foundation from which the open source community can develop and contribute different models to enable this tool to reach its full potential. The Linux Foundation, building on the support of IBM over these past three years, will help us build this community.”

The ISAC-SIMO project, hosted by the Linux Foundation, was imagined as a solution to help bridge gaps in technical knowledge that were apparent in the field. It packages important construction quality assurance checks into a mobile app.

“ISAC-SIMO has amazing potential to radically improve construction quality and ensure that homes are built or strengthened to a resilient standard, especially in areas affected by earthquakes, windstorms, and climate change”

The app ensures that workmanship issues can be more easily identified by anyone with a phone, instead of solely relying on technical staff. It does this by comparing user-uploaded images against trained models to assess whether the work done is broadly acceptable (go) or not (no go) along with a specific score.

Workmanship issues can be identified by anyone with a phone. Photo courtesy: Build Change

“Due to the pandemic, the project deliverables and target audience have evolved. Rather than sharing information and workflows between separate users within the app, the app has pivoted to provide tools for each user to perform their own checks based on their role and location,” added Daniel Krook, IBM chief technology officer for the Call for Code initiative.

“This has led to a general framework that is well-suited for plugging in models from the open source community, beyond Build Change’s original use case.”

Construction elements

According to Build Change, the project encourages new users to contribute and to deploy the software in new environments around the world. Priorities for short term updates include improvements in user interface, contributions to the image dataset for different construction elements, and support to automatically detect if the perspective of an image is flawed.

Build Change seeks to help save lives in earthquakes and windstorms. Its mission is to prevent housing loss caused by disasters by transforming the systems that regulate, finance, build, and improve houses around the world.

IoT Growth in Cities Accelerated by COVID-19sMART

IoT Growth in Cities Accelerated by COVID-19sMART

An ESI ThoughtLab report on sustainable development goals in 167 cities, representing nearly 7 percent of the world’s population, found that the coronavirus has accelerated technology growth worldwide as planners, administrators and businesses consider the post-pandemic realities of urban centers. Claire Swedberg explains why and how IoT Growth in Cities was Accelerated by COVID-19.

Global Study Shows IoT Growth in Cities Accelerated by COVID-19

By Claire Swedberg

Analytics company  ESI ThoughtLab (ESITL) has found that technology, including Internet of Things (IoT) solutions, is at the forefront as municipalities plan their COVID-19 pandemic recovery, along with sustainability initiatives. According to the company’s recent report, released this spring and titled “Smart City Solutions for a Riskier World,” COVID-19 served cities an unexpected stress test. The study found that cities are investing in technology-based solutions to meet sustainability development goals (SDGs) at an accelerated pace.

IoT Growth in Cities Accelerated by COVID-19
Lou Celi

To make that transition possible, says Lou Celi, ESI ThoughtLab’s CEO, a dual effort needs to be made to ensure citizen support and cybersecurity for IoT rollouts. ESITL collaborated with a coalition of businesses, government agencies and academics to conduct the overarching research, which explored 167 cities in 82 countries on all continents, representing 526 million residents (6.8 percent of the world’s population). The organization studied and interviewed cities to learn about their SDG efforts, including their existing and planned use of IoT and other smart technologies.

The project, which launched in early 2020, took approximately a year to complete. This was accomplished during the pandemic, and tracking will continue going forward in order to compare data following the outbreak. The IoT plays a part in the study, with the researchers examining the intersection of technology and sustainability goals. “It was a real watershed study,” Celi says, and cities were found to be already well invested in SDG and smart-city solutions, with most seeking to accelerate their adoption.

The study focused on urban rather than rural areas. “More than half of the world lives in cities, and that’s where social and environmental issues require the most attention,” Celi says. The research team’s survey used a scoring methodology that allowed them to categorize cities by their progress against the United Nations’ 17 SDGs. Cities were categorized in three stages of SDG progress—implementers that were still in the early stages, advancers that were making progress, and sprinters that have made the most progress on SDGs—and about 22 percent of the cities studied were sprinters.

When gathering information, ESITL collected quality-of-life data from such sources as the  World Bank,  Numbeo, Spain’s  University of Navarra and the  IESE Business School. The organization also conducted interviews with urban leaders and experts. “To identify best practices and provide case studies, we had in-depth discussions with government decision-makers and business leaders in smart cities around the world,” Celi states. ESITL established a multi-disciplinary advisory board to review the results, which consisted of city leaders, corporate executives and academic experts.

The study found that while IoT and other technologies are already being adopted to meet SDGs, COVID-19 has punched the gas pedal, with 65 percent of cities interviewed indicating that the biggest lesson they learned during the pandemic was how crucial smart-city programs are for their future. “One thing that’s very clear is that the pandemic has led us into an undeniably digital-first world,” Celi states, adding, “We knew the digital economy was coming, just not this soon.”

Smart-city solutions already yield sensor data that drives intelligence, Celi says, ranging from traffic control to air-quality measurements and infrastructure management. Now, he reports, “Cities are upping the ante. They are adopting transformative technologies, the exponential ones like IoT, blockchain and AI [artificial intelligence], as they try to harness data.” The cities that are most advanced in the use of smart technologies and are achieving the most progress in meeting their SDGs are those described as Cities 4.0, which are gearing up for the Fourth Industrial Revolution.

Such cities are advanced in using smart technologies and data to drive their social, environmental and economic agenda. Some examples, the survey found, include Athens, Helsinki, Moscow, Philadelphia and Tallinn. All 20 of the 4.0 cities have made large investments in IoT and cloud-based technologies, while 84 percent said they are currently making large investments in the IoT. On average, the study found, cities currently use six types of data, including biometrics and behavioral data, and will be using seven in the next three years. Those at the forefront of adoption—the sprinters—are expected to increase some of the fastest growing digital technology sources to nine.

When asked if the pandemic has had a lasting impact on their planning, 69 percent of the respondents indicated they are reconsidering urban planning and the use of space. More than half (53 percent) said the pandemic has permanently changed how people live, work, socialize and travel in cities. For 36 percent, COVID-19 exposed the weaknesses in cities’ operational continuity capabilities.

“Cities have changed dramatically since the pandemic,” Celi says, “and we’re not going back. They’re going to be using technology to reposition their cities and their focus is going to be on SDGs.” Additionally, 65 percent of respondents reported that the pandemic has demonstrated how crucial smart-city programs are for a city’s future. “Cities’ use of the IoT, from interconnected devices, is already very high, but it will be growing even faster and converge with other digital technologies, such as cloud, 5G and edge computing.”

According to the study’s results, two key challenges must be considered as technology expands in cities: public investment and security. As technology is adopted, Celi states, “It must be done in a smart way for security, and with citizens onboard.” With regard to security, 60 percent of cities indicated they still have cybersecurity vulnerabilities with their technology deployments. Smaller cities are the least secure, he notes, with only 29 percent reporting that they are well-secured against cybercrime.

“We found cybersecurity was a very big issue,” Celi states. “IoT raises a lot of digital risk.” Bad actors could do damage with cyberattacks, he explains, and the incidence of such attacks rose by about 50 percent during the pandemic. “The lesson is that cybersecurity should not be an afterthought. It should be something adopted initially.”

According to Celi, the most successful deployments were those from which the public gained benefits, while also reducing concerns about privacy. Already, the use of technology during the pandemic has lowered the level of privacy worries as citizens grow accustomed to having more technology in their lives to solve common problems. Based on the survey results, he says, the public’s data-privacy concerns have yielded to the realization in the past year that digital solutions can improve safety and lifestyle. Still, he adds, without a concerted effort to include the public in technology deployments, privacy concerns can result, leading to mistrust.

Cities with high levels of citizen participation tend to be those with stronger communities and more empowered citizens, the study indicated. Those deemed sprinters used a variety of techniques to bring the public onboard, such as ensuring that disadvantaged populations were included in technology capture and use, as well as providing gamification and incentives. City employees need to be brought into the decision-making process as well, the research found, in order to make technology adoption successful and inclusive. Other potential headwinds ahead for SDG efforts may include regulations, finding the right partners and keeping pace with technology changes.

Going forward, Celi says, “Our big push is going to be ‘What’s next?’ What everyone wants to know is, ‘What’s Main Street going to look like in three years?'” ESITL plans to continue researching the SDG progress and technology use of cities as the pandemic ends. He offers some predictions in the meantime: Remote work will continue, he says, and that affects cities in numerous ways, ranging from transportation to the environment. “One of the lessons learned from the pandemic was that there are ways to run a city with less of a carbon footprint.” As COVID-19 eases, he adds, “I think there’s more of a social awareness that we have to be better at keeping people and the planet healthy and safe.”

The study found that cities have been making strides in meeting their SDG goals. “I wasn’t expecting that so many cities were already embracing SDGs,” Celi admits. “But I was happy to see the correlation between technology and the SDGs.” As efforts build to meet sustainability demands, the research indicated that the most successful deployment consists of a collaborative effort. City governments benefit from working with partners ranging from businesses, associations and universities to other cities, federal agencies and multilateral organizations. “We need to work together to find the solution. And through the enlightened use of technology, we can help make the world a better place.”

Read the original document

Middle Eastern countries ramp up their scientific publications

Middle Eastern countries ramp up their scientific publications

Science‘s Middle Eastern countries ramp up their scientific publications by Jeffrey Brainard, at a time when they all seem to be still looking for a growth model especially needed in these times of pandemic. Here we have a whole region south and east of the Mediterranean whose elites had not been stranger to social mobilization and street politics in the past, presently sparing a little time to research better ways of life.

The picture above is for illustration and is of Al-Fanar Media.

Middle Eastern countries ramp up their scientific publications
Iran’s Sharif University of Technology has helped drive an increase in the country’s published scientific papers. MASOUD K/FLICKR/WIKIMEDIA COMMONS (CC BY-SA)

After years of lagging scientifically, countries in the Middle East and North Africa have significantly boosted their share of scholarly articles in international journals—as well as citations to those papers—during the past 4 decades, the Clarivate analytics firm said last week. Further growth could occur if the region’s countries boost their low rate of scientific cooperation with each other, it said.

From 1981 to 2019, the region quadrupled its share of research articles and reviews to 8%; among regions and large countries, only China grew by more. Clarivate’s report, based on its Web of Science bibliometric database, notes the “outstanding relative growth” of papers from the Middle East and North Africa came despite international sanctions against Iran and violent conflicts in Iraq and elsewhere.

The report covers 19 countries stretching from Morocco to Iran, but only six accounted for 80% of the 150,000 papers by the region’s scholars in 2019: Egypt, Iran, Israel, Saudi Arabia, Turkey, and Tunisia.

Iran led the way with 188,163 papers from 2015 to 2019; its output from 2000 to 2019 rose 30-fold. (Despite reports of paper mills and fake peer reviews involving papers by Iranian authors, the study notes efforts in Iran to tame the problem). At least some of Saudi Arabia’s expansion may have come from non-Saudi researchers affiliated with Saudi institutions.

“The notion that science and technology are essential for economic and societal progress, one of the pillars of the current policy in the European Union, applies to [this] region as well,” said Henk Moed, editor-in-chief of Scholarly Assessment Reports, a journal that covers research metrics, who was not involved in the Clarivate report. “The valuable trends presented in the Clarivate report, therefore, have a certain predictive value for economic and political relations in the region, especially in the somewhat longer term, and provide evidence that Iran’s economic and political role in the region will only grow stronger in the years to come.”

Clusters of the region’s papers focused on sustainable development, including soil erosion, and other areas of applied science, Clarivate said.

These and other publications have attracted growing attention: In 2019, 15 of the 19 countries had a citation score higher than the world average (when adjusted for differences across scholarly disciplines); in 2000, almost all had been well below.

The region’s international collaborations also increased, with 45% of its papers reporting co-authors from other countries in 2019; most often, the co-authors were in the United States. By comparison, the percentage in Western Europe was 65%. Worldwide, articles with such collaborations tend to attract higher citations. But countries in the Middle East and North Africa collaborated little with each other: Only 5% of their articles in 2019 had a co-author from a different country within the region.

Skirting the challenge of bridging long-standing tensions within the region, the Clarivate report encourages the countries to forge closer research ties, which “could improve competitiveness between the region and the rest of the world by focusing on shared needs and priorities.” One mechanism for encouraging regional collaboration could be a joint research-funding organization, similar to that of the European Union, the report said. Focusing on research might also “create more robust educational and social transformation through human resource capacity.”

“This would do much,” the report concludes, to “visibly rebuild the international reputation of Islamic, Arab, Persian and Turkish learning and scholarship that sustained the Western world for centuries.”Posted in: 

Middle Eastern countries ramp up their scientific publications
Portrait of Jeffrey Brainard

Jeffrey Brainard

Jeffrey Brainard joined Science as an associate news editor in 2017. He covers an array of topics and edits the In Brief section in the print magazine. 

How will the technology revolution of Construction 4.0 impact people?

How will the technology revolution of Construction 4.0 impact people?

A New Civil Engineer‘s article by Fred SHERRATT tries to answer How will the technology revolution of Construction 4.0 impact people?’ Preceding these excerpts and highlights through our bolds with all due respect for all involved are our thoughts.

The debate about the digital transformation of the construction industry in its different markets across, for instance, the MENA region, has been well surveyed on projects through the role of technology in shaping the next phase of development.

The impact of digitalisation in the region’s construction will encompass a radical change in all sectors. Such sectors as electricity and transport, particularly road construction, are naturally, as it were, prone to be digitally handled through automation with a certain ease. According to many observers, the building industry though being, as it were, more vernacular in its diversity and composition, would require still lots of digital innovation and eventually be a crucial driver of future growth in the construction industry. Collected data on what digitisation means for the construction industry to be spent on in the MENA region illustrates well over the recent past. Most concerns are for those countries of the Gulf whether the future’s Construction sites will be people-free’ for obvious reasons and the opposite for the rest of the MENA region.

The picture above is for illustration and is of The Fourth Industrial Revolution by Ahmad Sufian Bayram.


How will the technology revolution of Construction 4.0 impact people?
Fred Sherratt is the interim deputy dean for research and innovation in the Faculty of Science and Engineering at Anglia Ruskin University

How will the technology revolution of Construction 4.0 impact people?

Welcome to the Fourth Industrial Revolution! Under Construction 4.0 robots lay bricks and drones carry out surveys. Improved connectivity and data management means AI and machine learning can plan projects better than humans ever could. Building information modelling (BIM) has blossomed, projects completed in the virtual world before ground is even broken. Computer controlled craftsmanship optimises design, whilst the Internet of Things enables the use of real-time data processing and digital twins to optimise delivery on site.

Fred Sherratt is the interim deputy dean for research and innovation in the Faculty of Science and Engineering at Anglia Ruskin University

And for an industry told to Modernise or Die this could not have come at a better time.

Construction 4.0 promises increased efficiencies, enhanced and optimised productivity. Not to mention savings of time and money through reductions of labour, material and processing costs. This is trumpeted across the industry through voices heavy with technological optimism, industrial progress, all the benefits and rewards this revolution will bring, as well as scare stories for those not getting on board now – you’ll be left behind if you miss the boat!

But maybe we should think a little more critically about this. Because we have been here before. Three times to be precise.

And, it hasn’t always gone well. Not least because technology is not neutral, as Jacque Ellul argued in 1954. The underlying rational and objective methods that drive its implementation also instil within it an autonomy and amorality that is potentially dangerous. People and industries are compelled to adapt to technological change – as who but a Luddite would challenge all the promises it brings? – but such change is not always positive. History shows that technology can fundamentally disrupt the ways industries are structured and operate: workers are not just replaced by robots, things change so much neither robots or people are needed at all. So just because we can, doesn’t mean we should, and certainly not without careful deliberation.

Our industry contributes significantly to UK employment, including many site workers who’ve struggled with formal education whilst their myriad practical skills have long been devalued. For them, Construction 4.0 presents a positive narrative of “reskilling” or “multi-skilled” workers, but history suggests a downgrading of both job roles and earning potential is actually much more likely. Technological advancements tend to reduce labour requirements overall and also split skilled roles into two: new tasks only requiring one degree-qualified manager and some unskilled labour, with reduced quality of work and thus less remuneration. Estimates suggest 50% of traditional construction work could be automated over the next 20 years, making this a significant concern. But Construction 4.0 doesn’t care, the amorality technology brings to progress creates a convenient myopia for social consequences such as this. Any reduction in the numbers of people employed or their potential earnings is beneficial – a reduction in wage costs, hurrah! It’s just a shame about the jobs, and the satisfaction people used to be able to realise from skilled manual work.

And it is not just site workers who are vulnerable to such “progress”. Engineers have already seen their work shift into the virtual, where they now sit in front of screens to design and provide information to control and guide subcontractors. Their work is now shaped and structured by new technologies which require specialist skills for operation, and which also created new roles that potentially undermine professional autonomy. Whilst professionals were upskilling themselves, “BIM managers” took charge of the design process as a whole, because they were best able to navigate and negotiate the software, not because they were best skilled to lead design development or coordination. Although things have rebalanced as training caught up, professionals across our industry are now forced into ways of working as the technology dictates, choice is no longer an option.

Indeed, the “technology owner” may even become the dominant industry professional in the future, through the autonomy unquestionably conferred on them. Indeed, Cui bono [who will benefit] is never a bad question to ask, particularly in a US$10bn global construction software marketplace. Software vendors promise solutions to all manner of construction process inefficiencies, but in doing so they are also redesigning industry structures to fit their technologies. But the confidence (arrogance), that technology developers can capture (and inevitably improve) what we do is never challenged: they are now gurus to the industry, with little sense of history, craft or profession. The consequences of this dominance could be considerable: a built environment constructed to meet the dictates of technology, rather than the manifestation of the imagination, fun, creativity and humanity of a real person. Are we happy about that?

We should therefore consider carefully whose agendas Construction 4.0 is serving. Our industry does more than simply create our built environment, it also employs vast numbers of people who gain both income and self-validation from this process. Construction 4.0 is challenging how we do things, disrupting us, bringing progress at last to our dinosaur of an industry. But who is challenging Construction 4.0? Luckily it’s all still relatively piecemeal, smoke and mirrors are plentiful, and we are not (yet) at the point of no return. But it’s up to professionals to point out that Construction 4.0 has the potential to do harm as well as good. We should all think a little more critically before we add our voices to the current tsunami of technological optimism. It’s a common trope of our industry that people are our biggest asset. Why don’t we try to keep it that way?

  • Fred Sherratt is the interim deputy dean for research and innovation in the Faculty of Science and Engineering at Anglia Ruskin University
The first step towards the future of Smart Cities

The first step towards the future of Smart Cities

Smart Cities are set to gain further traction post the pandemic, with providers focusing on developing data-driven infrastructure to provide appropriate healthcare facilities and public security services. Could The first step towards the future of Smart Cities be a matter of connected buildings? BW SMART CITIESGanesh L Khanolkar explains.

Connected buildings: The first step towards the future of smart cities

17 February, 2021

Earlier this year, International Data Corporation (IDC) released a forecast predicting that the global spending on smart city initiatives will reach a staggering $124 billion, by the end of 2020. This is an increase of about 18.9% compared to the 2019 spend for the same. 

This comes as no surprise considering smart cities are set to gain further traction post the pandemic, with providers focusing on developing data-driven infrastructure to provide appropriate healthcare facilities and public security services. Investments in the space too, are expected to rise significantly over the next few years. 

While the smart city has definitely become a buzzword of sorts, there is very little understanding on what it takes to achieve this vision. When we think of smart cities, we immediately conjure images of Artificial intelligence (AI), driverless cars, smart street lighting, smart parking, etc. But we fail to guess the starting point of a connected society – smart buildings. 

After all, buildings are the ideal starting points from which a smart city can grow. Just how a building is a functional unit of a city, smart buildings are the primary units of a smart city. Smart buildings integrate technology and the IoT to provide solutions to challenges like overspend and inefficiency in building management. Within a smart building, all the systems are connected, from managing energy, water, lighting, to delivering security and emergency services. Therefore, smart buildings empowered by the deployment of IoT and cloud technologies will be the key reason for smart cities to succeed. So what are the key factors that make a building ‘smart’? Below are some of the key features. 

Energy Efficiency: Connected buildings primarily help save power and centralize control over the energy management. Such buildings unify the management of heating, cooling and lighting functions, and eliminating wastes within the building by use of advanced sensors. Smart thermostats turn the temperature down in your absence saving power to save power and also use renewable energy sources (e.g. Solar panels) thereby reducing our dependence on fossil fuels and electricity.

Predictive Maintenance: Connected building models provide constant monitoring and evaluation of embedded automation and systems. Be it anticipating asset lifecycles, or monitoring the life, repair and replacement of individual elements, predictive management help avoid shutdowns which can incur loses. Minimizing disruption in building operations reflects positively on resource and capital utilization, as well as leading to greater ROI by enhancing the market value of the property.

Enhanced Security: Smart buildings provide enhanced security on various levels. As these buildings are all connected, building managers can integrate fire, intrusion and access systems to provide inmates the highest degree of safety possible. Further, each of these critical amenities can be customized, resulting in an overall synergy, as well as a strict adherence to local or state safety compliance. 

Current challenges in making old buildings smart and how technology helps

Given that half the world’s population currently lives in urban areas, this trend will put unprecedented pressure on our built environment, especially maintaining our buildings. Floor space restrictions are making our cities increasingly taller. So there is an urgent need for a reliable and efficient building services to maintain these buildings and ensure they run at optimum efficiency. 

Currently what holds many buildings back from becoming smarter is their reliance the conventional paper model to manage critical systems, be it electricity, plumbing or air conditioning. Agreed that a full scale revamp of an existing building is somewhat of a costly undertaking, but technology does help make this transition easier. 

Old buildings without smart sensors or fixtures can still be optimized for energy usage by deploying intelligent systems of rule-based efficiency modules. Most of these old buildings have energy meters, and further, several components of the HVAC system are energy hoggers. There is an energy meter associated with each of these. It is through these energy meters that data of energy-hogging equipment of old buildings is gathered. And by using advanced machine learning algorithms, modules can be built that can help decide how energy is being used, apart from detecting fault through identification of abnormal usage. 

Such deployment of integrated IoT solutions to render old buildings advanced and smart can assure building owners and managers of a significant ROI in the long run. 

How the pandemic is shifting priorities towards smart buildings 

The pandemic has really forced us to rethink the way that we are currently living. While many of us have embraced technology to keep connected personally and professionally during the lockdown, very few are aware of how the concept of connected buildings (a key building block of smart cities) can be used effectively to ensure the safety of a building’s inmates and control the spread of the disease. Connected buildings are without a doubt the easiest implementation of a digital upgrade which can have a positive impact on all the fundamental elements around which our societies are organized. Therefore, it is more critical than ever for policymakers at both local, and national level to plan their connected building strategies.

Disclaimer: The views expressed in the article above are those of the authors’ and do not necessarily represent or reflect the views of this publishing house