+44 01483 457477 farolaz@hotmail.co.uk

Arab Narratives About Artificial Intelligence Are Explored

Advertisements

Al-Fanar Media elaborates on a report where the so-called Arab narratives, about Artificial Intelligence, are explored. AI is also predicted, it could change the MENA region more profoundly than anything else before. How would that happen?
Is it through using a wide-ranging branch of computer science concerned with building intelligent machines capable of performing tasks that typically require human beings’ brains?
Or is it just another way of procuring the ability of a computer or computer-controlled or robot to perform tasks commonly associated with intelligent beings? Or put another way, is it needed to cover humans’ unpredictable performance by a more stable and well-controlled machine?

But what are Arab narratives?

The MENA region is culturally dominated by the Arab ethnocultural authoritarianism in the current socio-political systems and finds it difficult to get their respective populations to come up with some added value in any domain.

They might, though, have some success with the AI. Let us see.

The picture above is for illustration.

Arab Narratives About Artificial Intelligence Are Explored in New Report

By Tarek Abd El-Galil 

CAIRO—The Middle East and North Africa region needs to be more involved in the global debate about the development of artificial intelligence-related technology, says a new report that examines the narratives about technological futures that are widespread in the Arab world.

Narratives about future uses of robots and intelligent machines—how a culture portrays them in areas including history, literature, art and films—can influence the development and reception of artificial intelligence (AI), says the report. Yet Western perspectives typically dominate AI discussions, it says, and Arab perspectives are largely missing.

The authors examine the ideas about artificial intelligence that are prevalent in the Arab world and seek to bring them into the wider debate (Image: Pixabay).

Titled “Imagining a Future With Artificial Machines: A Middle Eastern and North African Perspective,” the report was issued earlier this month by the Access to Knowledge for Development Center at the American University in Cairo’s School of Business and the Leverhulme Centre for the Future of Artificial Intelligence at the University of Cambridge.

It notes the MENA region’s rich history and culture and the ability of its youth to employ technology as a means of expression, by presenting  literary works based on science fiction or by their economic participation in technology-based start-ups, which can help create new business models suitable for the future and contribute to providing job opportunities in an area where young people make up a large majority of the population

Joining the Global Dialogue

“The region might not be rich in technology compared to developed countries,” said Nagla Rizk, a professor of economics and founding director of the Access to Knowledge for Development Center, who is a co-author of the report. “However,” she added, “it has a rich stock of culture and history that manifests in technological narratives in different ways.”

“Our participation in this initiative was an excellent opportunity to include the voice of our Arab region in the global dialogue platform on artificial intelligence narratives.”

Nagla Rizk  A professor of economics and founding director of the Ac cess to Knowledge for Development Center

The report comes as part of the Global Artificial Intelligence Narratives Project, an initiative within the Leverhulme Centre to build a network of experts around the world to analyze different cultures’ perceptions of the risks and benefits of AI. The initiative holds a series of workshops outside the English-speaking world, with local multidisciplinary groups of researchers and practitioners from fields related to AI narratives, such as science fiction, scientists, artists, AI researchers, philosophers, writers and anthropologists.

“Our participation in this initiative was an excellent opportunity to include the voice of our Arab region in the global dialogue platform on artificial intelligence narratives,” Rizk said.

She noted that because modern technology, especially artificial intelligence, is usually developed in technologically advanced countries in response to the needs and aspirations of their people and in a way that expresses their cultures, this can result in a kind of inequality, given that the rest of the world does not share those countries’ needs in developing this technology.

Not a Technology ‘Desert’

The report refutes the common notion that the MENA region is a technology “desert” devoid of ideas and the real development of technology. It reveals the existence of rich, rapidly growing technological oases that mix the influence of Western, Eastern and local cultures, and have their own independent character. (See the related articles “Genetics and Artificial Intelligence Drive Qatar University’s Covid-19 Research” and “Arab Researchers Use Artificial Intelligence in Bid to Thwart Fake News.”)

For example, technological development is being pushed at breakneck speed by the governments in the United Arab Emirates and Qatar, as well as in less affluent countries such as Egypt, Jordan and Tunisia. Such initiatives are often influenced by Western models, in contrast with the current grass-roots efforts and start-ups, which usually rely on simple technologies and local techniques that reflect the concepts of individuals.

“Stories about AI that are grounded in the realities of people living in the Middle East are the best way to explore local visions of the future using smart machines.”

Tomasz Hollanek  A media and technology researcher at the University of Cambridge and a student fellow at the Leverhulme Centre

“Stories about AI that are grounded in the realities of people living in the Middle East are the best way to explore local visions of the future using smart machines,” said Tomasz Hollanek, a media and technology researcher at the University of Cambridge and a student fellow at the Leverhulme Centre. Hollanek, who is also one of the report’s authors, believes it is important for these visions to reflect the aspirations and needs of the region’s people, rather than importing ideas from elsewhere, particularly from the English-speaking West.

Fear of Reinforcing Stereotypes 

The report expresses concerns that some narratives about artificial intelligence in the region will reinforce gender stereotypes in the future. It cites an example from a popular Egyptian comedy skit from the 1980s, in which a female robot named “Ruby” appears as a domestic servant who responds to orders from the play’s main male character.

In contrast, “Ibn Sina,” the first Arabic-speaking robot, created in the U.A.E., is anthropomorphized as male and is not a servant. Named after a famous 11th-century philosopher, physician and poet, the robot symbolizes the region’s scientific heritage and reflects strength and wisdom, the main traits of masculinity in patriarchal societies.

Another local example is a robot named “Zaki”—which means “smart” in Arabic.  Zaki is a chatbot used in an Internet banking platform in Egypt, and thus reflects men’s control of the financial sector, the report says.

Hollanek points out that narratives can have a direct impact on how technologies are conceived and developed. For example, the representation of certain groups on screen can have a realistic effect on who performs certain jobs: the more female AI researchers appear in films and TV series, the more likely young, ambitious women will pursue a career in AI research.

“We hope for a better reality and future for Arab women, away from stereotypes, which will naturally be reflected in their portrayal in technological narratives,” said Rizk.

Obstacles and Opportunities

“We just need to be able to discover talented people and properly employ them to build a base for technology development.”

Mohamed Zahran  A professor of computer science at New York University

According to Hollanek, the report reveals how post-colonial perspectives—both in the region and among MENA citizens and beyond—continue to significantly influence perceptions of the Arab region’s potential for full realization of the benefits of AI. That’s why he says it’s important to imagine a future with intelligent machines as a decolonial activity, as a way to resist the Western ideas of “progress” or “development.”

Mohamed Zahran, a professor of computer science at New York University, believes there are obstacles facing the region’s acceptance of the development of artificial intelligence. These include the fear that robots will take people’s jobs, and the fear of Western dominance in the technology market; fears the report also highlighted.

However, Zahran agrees with the report’s authors that the region will be able to overcome these obstacles, with its capabilities, talents, and emerging artificial intelligence start-ups, in addition to the ability to rent supercomputers that are now available.

While technology is Western, Zahran said, the report draws the world’s attention to the Middle East and what it can contribute to developing the future of artificial intelligence. “We just need to be able to discover talented people and properly employ them to build a base for technology development,” he said.

AI used to examine construction following earthquakes

Advertisements

SmartCitiesWorld News team informs that AI is used to examine construction following earthquakes in its vital assessment concerning quality, safety and potential risks in its future usage.

The picture above is about how an App helps engineers identify structural issues. Photo courtesy: Build Change

AI used to examine construction following earthquakes

An open-source project hosted by the Linux Foundation with support from IBM and Call for Code will use machine learning to help inform quality assurance for construction in emerging nations.

A new open source machine learning tool has been developed to help inform quality assurance for construction in emerging nations.

Build Change, with support from IBM as part of the Call for Code initiative, created the Intelligent Supervision Assistant for Construction (ISAC-SIMO) tool to feedback on specific construction elements such as masonry walls and reinforced concrete columns.

Structural issues

The aim is to help engineers identify structural issues in masonry walls or concrete columns, especially in areas affected by disasters.

Users can choose a building element check and upload a photo from the site to receive a quick assessment.

“ISAC-SIMO has amazing potential to radically improve construction quality and ensure that homes are built or strengthened to a resilient standard, especially in areas affected by earthquakes, windstorms, and climate change,” said Dr Elizabeth Hausler, founder and CEO of Build Change.

“We’ve created a foundation from which the open source community can develop and contribute different models to enable this tool to reach its full potential. The Linux Foundation, building on the support of IBM over these past three years, will help us build this community.”

The ISAC-SIMO project, hosted by the Linux Foundation, was imagined as a solution to help bridge gaps in technical knowledge that were apparent in the field. It packages important construction quality assurance checks into a mobile app.

“ISAC-SIMO has amazing potential to radically improve construction quality and ensure that homes are built or strengthened to a resilient standard, especially in areas affected by earthquakes, windstorms, and climate change”

The app ensures that workmanship issues can be more easily identified by anyone with a phone, instead of solely relying on technical staff. It does this by comparing user-uploaded images against trained models to assess whether the work done is broadly acceptable (go) or not (no go) along with a specific score.

Workmanship issues can be identified by anyone with a phone. Photo courtesy: Build Change

“Due to the pandemic, the project deliverables and target audience have evolved. Rather than sharing information and workflows between separate users within the app, the app has pivoted to provide tools for each user to perform their own checks based on their role and location,” added Daniel Krook, IBM chief technology officer for the Call for Code initiative.

“This has led to a general framework that is well-suited for plugging in models from the open source community, beyond Build Change’s original use case.”

Construction elements

According to Build Change, the project encourages new users to contribute and to deploy the software in new environments around the world. Priorities for short term updates include improvements in user interface, contributions to the image dataset for different construction elements, and support to automatically detect if the perspective of an image is flawed.

Build Change seeks to help save lives in earthquakes and windstorms. Its mission is to prevent housing loss caused by disasters by transforming the systems that regulate, finance, build, and improve houses around the world.

IoT Growth in Cities Accelerated by COVID-19sMART

Advertisements

An ESI ThoughtLab report on sustainable development goals in 167 cities, representing nearly 7 percent of the world’s population, found that the coronavirus has accelerated technology growth worldwide as planners, administrators and businesses consider the post-pandemic realities of urban centers. Claire Swedberg explains why and how IoT Growth in Cities was Accelerated by COVID-19.

Global Study Shows IoT Growth in Cities Accelerated by COVID-19

By Claire Swedberg

Analytics company  ESI ThoughtLab (ESITL) has found that technology, including Internet of Things (IoT) solutions, is at the forefront as municipalities plan their COVID-19 pandemic recovery, along with sustainability initiatives. According to the company’s recent report, released this spring and titled “Smart City Solutions for a Riskier World,” COVID-19 served cities an unexpected stress test. The study found that cities are investing in technology-based solutions to meet sustainability development goals (SDGs) at an accelerated pace.

Lou Celi

To make that transition possible, says Lou Celi, ESI ThoughtLab’s CEO, a dual effort needs to be made to ensure citizen support and cybersecurity for IoT rollouts. ESITL collaborated with a coalition of businesses, government agencies and academics to conduct the overarching research, which explored 167 cities in 82 countries on all continents, representing 526 million residents (6.8 percent of the world’s population). The organization studied and interviewed cities to learn about their SDG efforts, including their existing and planned use of IoT and other smart technologies.

The project, which launched in early 2020, took approximately a year to complete. This was accomplished during the pandemic, and tracking will continue going forward in order to compare data following the outbreak. The IoT plays a part in the study, with the researchers examining the intersection of technology and sustainability goals. “It was a real watershed study,” Celi says, and cities were found to be already well invested in SDG and smart-city solutions, with most seeking to accelerate their adoption.

The study focused on urban rather than rural areas. “More than half of the world lives in cities, and that’s where social and environmental issues require the most attention,” Celi says. The research team’s survey used a scoring methodology that allowed them to categorize cities by their progress against the United Nations’ 17 SDGs. Cities were categorized in three stages of SDG progress—implementers that were still in the early stages, advancers that were making progress, and sprinters that have made the most progress on SDGs—and about 22 percent of the cities studied were sprinters.

When gathering information, ESITL collected quality-of-life data from such sources as the  World Bank,  Numbeo, Spain’s  University of Navarra and the  IESE Business School. The organization also conducted interviews with urban leaders and experts. “To identify best practices and provide case studies, we had in-depth discussions with government decision-makers and business leaders in smart cities around the world,” Celi states. ESITL established a multi-disciplinary advisory board to review the results, which consisted of city leaders, corporate executives and academic experts.

The study found that while IoT and other technologies are already being adopted to meet SDGs, COVID-19 has punched the gas pedal, with 65 percent of cities interviewed indicating that the biggest lesson they learned during the pandemic was how crucial smart-city programs are for their future. “One thing that’s very clear is that the pandemic has led us into an undeniably digital-first world,” Celi states, adding, “We knew the digital economy was coming, just not this soon.”

Smart-city solutions already yield sensor data that drives intelligence, Celi says, ranging from traffic control to air-quality measurements and infrastructure management. Now, he reports, “Cities are upping the ante. They are adopting transformative technologies, the exponential ones like IoT, blockchain and AI [artificial intelligence], as they try to harness data.” The cities that are most advanced in the use of smart technologies and are achieving the most progress in meeting their SDGs are those described as Cities 4.0, which are gearing up for the Fourth Industrial Revolution.

Such cities are advanced in using smart technologies and data to drive their social, environmental and economic agenda. Some examples, the survey found, include Athens, Helsinki, Moscow, Philadelphia and Tallinn. All 20 of the 4.0 cities have made large investments in IoT and cloud-based technologies, while 84 percent said they are currently making large investments in the IoT. On average, the study found, cities currently use six types of data, including biometrics and behavioral data, and will be using seven in the next three years. Those at the forefront of adoption—the sprinters—are expected to increase some of the fastest growing digital technology sources to nine.

When asked if the pandemic has had a lasting impact on their planning, 69 percent of the respondents indicated they are reconsidering urban planning and the use of space. More than half (53 percent) said the pandemic has permanently changed how people live, work, socialize and travel in cities. For 36 percent, COVID-19 exposed the weaknesses in cities’ operational continuity capabilities.

“Cities have changed dramatically since the pandemic,” Celi says, “and we’re not going back. They’re going to be using technology to reposition their cities and their focus is going to be on SDGs.” Additionally, 65 percent of respondents reported that the pandemic has demonstrated how crucial smart-city programs are for a city’s future. “Cities’ use of the IoT, from interconnected devices, is already very high, but it will be growing even faster and converge with other digital technologies, such as cloud, 5G and edge computing.”

According to the study’s results, two key challenges must be considered as technology expands in cities: public investment and security. As technology is adopted, Celi states, “It must be done in a smart way for security, and with citizens onboard.” With regard to security, 60 percent of cities indicated they still have cybersecurity vulnerabilities with their technology deployments. Smaller cities are the least secure, he notes, with only 29 percent reporting that they are well-secured against cybercrime.

“We found cybersecurity was a very big issue,” Celi states. “IoT raises a lot of digital risk.” Bad actors could do damage with cyberattacks, he explains, and the incidence of such attacks rose by about 50 percent during the pandemic. “The lesson is that cybersecurity should not be an afterthought. It should be something adopted initially.”

According to Celi, the most successful deployments were those from which the public gained benefits, while also reducing concerns about privacy. Already, the use of technology during the pandemic has lowered the level of privacy worries as citizens grow accustomed to having more technology in their lives to solve common problems. Based on the survey results, he says, the public’s data-privacy concerns have yielded to the realization in the past year that digital solutions can improve safety and lifestyle. Still, he adds, without a concerted effort to include the public in technology deployments, privacy concerns can result, leading to mistrust.

Cities with high levels of citizen participation tend to be those with stronger communities and more empowered citizens, the study indicated. Those deemed sprinters used a variety of techniques to bring the public onboard, such as ensuring that disadvantaged populations were included in technology capture and use, as well as providing gamification and incentives. City employees need to be brought into the decision-making process as well, the research found, in order to make technology adoption successful and inclusive. Other potential headwinds ahead for SDG efforts may include regulations, finding the right partners and keeping pace with technology changes.

Going forward, Celi says, “Our big push is going to be ‘What’s next?’ What everyone wants to know is, ‘What’s Main Street going to look like in three years?'” ESITL plans to continue researching the SDG progress and technology use of cities as the pandemic ends. He offers some predictions in the meantime: Remote work will continue, he says, and that affects cities in numerous ways, ranging from transportation to the environment. “One of the lessons learned from the pandemic was that there are ways to run a city with less of a carbon footprint.” As COVID-19 eases, he adds, “I think there’s more of a social awareness that we have to be better at keeping people and the planet healthy and safe.”

The study found that cities have been making strides in meeting their SDG goals. “I wasn’t expecting that so many cities were already embracing SDGs,” Celi admits. “But I was happy to see the correlation between technology and the SDGs.” As efforts build to meet sustainability demands, the research indicated that the most successful deployment consists of a collaborative effort. City governments benefit from working with partners ranging from businesses, associations and universities to other cities, federal agencies and multilateral organizations. “We need to work together to find the solution. And through the enlightened use of technology, we can help make the world a better place.”

Read the original document

Middle Eastern countries ramp up their scientific publications

Advertisements

Science‘s Middle Eastern countries ramp up their scientific publications by Jeffrey Brainard, at a time when they all seem to be still looking for a growth model especially needed in these times of pandemic. Here we have a whole region south and east of the Mediterranean whose elites had not been stranger to social mobilization and street politics in the past, presently sparing a little time to research better ways of life.

The picture above is for illustration and is of Al-Fanar Media.

Iran’s Sharif University of Technology has helped drive an increase in the country’s published scientific papers. MASOUD K/FLICKR/WIKIMEDIA COMMONS (CC BY-SA)

After years of lagging scientifically, countries in the Middle East and North Africa have significantly boosted their share of scholarly articles in international journals—as well as citations to those papers—during the past 4 decades, the Clarivate analytics firm said last week. Further growth could occur if the region’s countries boost their low rate of scientific cooperation with each other, it said.

From 1981 to 2019, the region quadrupled its share of research articles and reviews to 8%; among regions and large countries, only China grew by more. Clarivate’s report, based on its Web of Science bibliometric database, notes the “outstanding relative growth” of papers from the Middle East and North Africa came despite international sanctions against Iran and violent conflicts in Iraq and elsewhere.

The report covers 19 countries stretching from Morocco to Iran, but only six accounted for 80% of the 150,000 papers by the region’s scholars in 2019: Egypt, Iran, Israel, Saudi Arabia, Turkey, and Tunisia.

Iran led the way with 188,163 papers from 2015 to 2019; its output from 2000 to 2019 rose 30-fold. (Despite reports of paper mills and fake peer reviews involving papers by Iranian authors, the study notes efforts in Iran to tame the problem). At least some of Saudi Arabia’s expansion may have come from non-Saudi researchers affiliated with Saudi institutions.

“The notion that science and technology are essential for economic and societal progress, one of the pillars of the current policy in the European Union, applies to [this] region as well,” said Henk Moed, editor-in-chief of Scholarly Assessment Reports, a journal that covers research metrics, who was not involved in the Clarivate report. “The valuable trends presented in the Clarivate report, therefore, have a certain predictive value for economic and political relations in the region, especially in the somewhat longer term, and provide evidence that Iran’s economic and political role in the region will only grow stronger in the years to come.”

Clusters of the region’s papers focused on sustainable development, including soil erosion, and other areas of applied science, Clarivate said.

These and other publications have attracted growing attention: In 2019, 15 of the 19 countries had a citation score higher than the world average (when adjusted for differences across scholarly disciplines); in 2000, almost all had been well below.

The region’s international collaborations also increased, with 45% of its papers reporting co-authors from other countries in 2019; most often, the co-authors were in the United States. By comparison, the percentage in Western Europe was 65%. Worldwide, articles with such collaborations tend to attract higher citations. But countries in the Middle East and North Africa collaborated little with each other: Only 5% of their articles in 2019 had a co-author from a different country within the region.

Skirting the challenge of bridging long-standing tensions within the region, the Clarivate report encourages the countries to forge closer research ties, which “could improve competitiveness between the region and the rest of the world by focusing on shared needs and priorities.” One mechanism for encouraging regional collaboration could be a joint research-funding organization, similar to that of the European Union, the report said. Focusing on research might also “create more robust educational and social transformation through human resource capacity.”

“This would do much,” the report concludes, to “visibly rebuild the international reputation of Islamic, Arab, Persian and Turkish learning and scholarship that sustained the Western world for centuries.”Posted in: 

Jeffrey Brainard

Jeffrey Brainard joined Science as an associate news editor in 2017. He covers an array of topics and edits the In Brief section in the print magazine. 

How will the technology revolution of Construction 4.0 impact people?

Advertisements

A New Civil Engineer‘s article by Fred SHERRATT tries to answer How will the technology revolution of Construction 4.0 impact people?’ Preceding these excerpts and highlights through our bolds with all due respect for all involved are our thoughts.

The debate about the digital transformation of the construction industry in its different markets across, for instance, the MENA region, has been well surveyed on projects through the role of technology in shaping the next phase of development.

The impact of digitalisation in the region’s construction will encompass a radical change in all sectors. Such sectors as electricity and transport, particularly road construction, are naturally, as it were, prone to be digitally handled through automation with a certain ease. According to many observers, the building industry though being, as it were, more vernacular in its diversity and composition, would require still lots of digital innovation and eventually be a crucial driver of future growth in the construction industry. Collected data on what digitisation means for the construction industry to be spent on in the MENA region illustrates well over the recent past. Most concerns are for those countries of the Gulf whether the future’s Construction sites will be people-free’ for obvious reasons and the opposite for the rest of the MENA region.

The picture above is for illustration and is of The Fourth Industrial Revolution by Ahmad Sufian Bayram.


Fred Sherratt is the interim deputy dean for research and innovation in the Faculty of Science and Engineering at Anglia Ruskin University

How will the technology revolution of Construction 4.0 impact people?

Welcome to the Fourth Industrial Revolution! Under Construction 4.0 robots lay bricks and drones carry out surveys. Improved connectivity and data management means AI and machine learning can plan projects better than humans ever could. Building information modelling (BIM) has blossomed, projects completed in the virtual world before ground is even broken. Computer controlled craftsmanship optimises design, whilst the Internet of Things enables the use of real-time data processing and digital twins to optimise delivery on site.

Fred Sherratt is the interim deputy dean for research and innovation in the Faculty of Science and Engineering at Anglia Ruskin University

And for an industry told to Modernise or Die this could not have come at a better time.

Construction 4.0 promises increased efficiencies, enhanced and optimised productivity. Not to mention savings of time and money through reductions of labour, material and processing costs. This is trumpeted across the industry through voices heavy with technological optimism, industrial progress, all the benefits and rewards this revolution will bring, as well as scare stories for those not getting on board now – you’ll be left behind if you miss the boat!

But maybe we should think a little more critically about this. Because we have been here before. Three times to be precise.

And, it hasn’t always gone well. Not least because technology is not neutral, as Jacque Ellul argued in 1954. The underlying rational and objective methods that drive its implementation also instil within it an autonomy and amorality that is potentially dangerous. People and industries are compelled to adapt to technological change – as who but a Luddite would challenge all the promises it brings? – but such change is not always positive. History shows that technology can fundamentally disrupt the ways industries are structured and operate: workers are not just replaced by robots, things change so much neither robots or people are needed at all. So just because we can, doesn’t mean we should, and certainly not without careful deliberation.

Our industry contributes significantly to UK employment, including many site workers who’ve struggled with formal education whilst their myriad practical skills have long been devalued. For them, Construction 4.0 presents a positive narrative of “reskilling” or “multi-skilled” workers, but history suggests a downgrading of both job roles and earning potential is actually much more likely. Technological advancements tend to reduce labour requirements overall and also split skilled roles into two: new tasks only requiring one degree-qualified manager and some unskilled labour, with reduced quality of work and thus less remuneration. Estimates suggest 50% of traditional construction work could be automated over the next 20 years, making this a significant concern. But Construction 4.0 doesn’t care, the amorality technology brings to progress creates a convenient myopia for social consequences such as this. Any reduction in the numbers of people employed or their potential earnings is beneficial – a reduction in wage costs, hurrah! It’s just a shame about the jobs, and the satisfaction people used to be able to realise from skilled manual work.

And it is not just site workers who are vulnerable to such “progress”. Engineers have already seen their work shift into the virtual, where they now sit in front of screens to design and provide information to control and guide subcontractors. Their work is now shaped and structured by new technologies which require specialist skills for operation, and which also created new roles that potentially undermine professional autonomy. Whilst professionals were upskilling themselves, “BIM managers” took charge of the design process as a whole, because they were best able to navigate and negotiate the software, not because they were best skilled to lead design development or coordination. Although things have rebalanced as training caught up, professionals across our industry are now forced into ways of working as the technology dictates, choice is no longer an option.

Indeed, the “technology owner” may even become the dominant industry professional in the future, through the autonomy unquestionably conferred on them. Indeed, Cui bono [who will benefit] is never a bad question to ask, particularly in a US$10bn global construction software marketplace. Software vendors promise solutions to all manner of construction process inefficiencies, but in doing so they are also redesigning industry structures to fit their technologies. But the confidence (arrogance), that technology developers can capture (and inevitably improve) what we do is never challenged: they are now gurus to the industry, with little sense of history, craft or profession. The consequences of this dominance could be considerable: a built environment constructed to meet the dictates of technology, rather than the manifestation of the imagination, fun, creativity and humanity of a real person. Are we happy about that?

We should therefore consider carefully whose agendas Construction 4.0 is serving. Our industry does more than simply create our built environment, it also employs vast numbers of people who gain both income and self-validation from this process. Construction 4.0 is challenging how we do things, disrupting us, bringing progress at last to our dinosaur of an industry. But who is challenging Construction 4.0? Luckily it’s all still relatively piecemeal, smoke and mirrors are plentiful, and we are not (yet) at the point of no return. But it’s up to professionals to point out that Construction 4.0 has the potential to do harm as well as good. We should all think a little more critically before we add our voices to the current tsunami of technological optimism. It’s a common trope of our industry that people are our biggest asset. Why don’t we try to keep it that way?

  • Fred Sherratt is the interim deputy dean for research and innovation in the Faculty of Science and Engineering at Anglia Ruskin University