Achieving AI and Machine Learning to accelerate the energy transition

Achieving AI and Machine Learning to accelerate the energy transition

A successful and timely energy transition needs Artificial Intelligence and Machine Learning (AI\ML ) to accelerate change. 
The transition to sustainable construction could well be at the forefront of such a transition.  

Achieving AI and Machine Learning to accelerate the energy transition

Reducing costs, enabling more performant (new) energy businesses and the complex coordination of multiple energy players are crucial in this transformation. However we’re still in the early stages of AI\ML, how can we achieve AI\ML rapid adoption at scale?

Why there is no energy transition without Intelligence Intensity

For the green deal to succeed, we need to start moving towards a whole system approach, interconnecting sectors from diverse energy carriers to industries, transport, and buildings, driving Power-to-X, industrial clusters, industrial smart steering, 24 by 7 green energy matching, hybrid energy parks, and new low-carbon energy value chains leading to billions of networked “things”. Flexible yet complex coordination is required that is close to real-time and optimised for multiple, varying stakeholder interests – impossible to be done by humans.

The key role AI/ML plays in reducing the gigantic investments required for the energy transition can lower the levelised costs of energy, accelerate the issuing of permits and grid connections, and optimise yield, thus speeding up the deployment of the massive renewable generation required. Grid capacity can be expanded digitally, avoiding traditional grid reinforcements that are expensive and time-consuming to build. AI\ML also enables flexibility services coordination for maximum DERs value and infrastructure usage.

Microsoft is fully committed to a rapid AI\ML adoption at scale which is already evolving into a technical reality with higher use than anticipated. Partnerships and co-innovation with clients and partners and the wider ecosystem accelerate the creation of missing digital solutions and the development of digital accelerators for wider, faster, and simpler adoption of digital.

Accelerating AI\ML innovation through open data platforms, open ecosystems, open-source

AI\ML needs a lot of data! Strengthened open energy data platforms give innovators in the ecosystem access in a safe, scalable and performant way to vast volumes of quality data essential to train AI models. Microsoft joined OSDU (Open Subsurface Data Universe) to create an open-source, cloud-agnostic platform to collect subsurface data from O&G operations valuable to O&G but also to renewable offshore players.

Energy Datahubs in Europe also play a vital role in driving innovation. This is why Microsoft and Energinet partnered to co-create the open-source Green Energy Hub blueprints on GitHub for experts to contribute and for others to develop their own data hubs, creating an accelerator for the future smart green solutions.

With AI still in its early stages, it is key to inspire energy players of its successful, tangible impact and to facilitate access to solutions. Microsoft launched the Open AI Energy Initiative (OAI), an open ecosystem for operators, independent software vendors, and equipment providers to offer additional solutions, and the global AI Centre of Excellence for Energy called Microsoft Energy Core features over 40 partner solutions.

The driving co-innovation force of strategic partnerships with energy leaders

Strategic partnerships with market makers enables the acceleration of transformation but also to co-invest deeper and wider in the creation of leading-edge digital solutions for current operations and for the complex chain orchestration needed for a successful energy transition. Foundational research for AI in energy and energy-specific platform-based capabilities are not only developed faster.

These intelligence-intense, leading-edge lighthouse use cases inform the industry for fast followers and create digital optimism for speed. Together we become a driving force for the formation of new value chains, ecosystems, and business models that accelerate meeting the goals of the green agenda.

Utilities specific digital accelerators for wider, faster, and simpler adoption

Energy players want more pre-built capabilities specific to utilities for faster time to market AI\ML models. The 15 years of enhanced utilities-specific industry data models acquired from ADRM exemplify the current enrichment with automation of data ingestion from multiple sources, addressing a major hurdle on data.

Another example is the common domain-specific ontologies that are fundamental to accelerating the development of digital twin solutions. Microsoft, together with Agder Energi, launched the open-source Energy Grid Ontology to be added by others for smart cities and smart buildings.

More broadly, the road ahead is for industry clouds. Energy players can focus much higher in the technology stack at the business applications layer, thus shortening innovation cycles, getting faster into the predictive era, and simplifying adoption.

Through co-investment, Microsoft is accelerating the development of energy-specific platform-based capabilities allowing energy players to focus their AI efforts at the business applications level such as for portfolio optimisation, risk management, and also trading.

WATCH: Why AI is key in solving complex energy transition challenges

Learn more about Microsoft

The above-featured image is of Shell on the very subject of Energy Transition through AI, etc.

Developing countries are being left behind in the AI race

Developing countries are being left behind in the AI race

Developing countries are being left behind in the AI race in spite of what is constantly vented out by the local media in the MENA region.

Developing countries are being left behind in the AI race – and that’s a problem for all of us

By Joyjit Chatterjee, University of Hull and Nina Dethlefs, University of Hull

Artificial Intelligence (AI) is much more than just a buzzword nowadays. It powers facial recognition in smartphones and computers, translation between foreign languages, systems which filter spam emails and identify toxic content on social media, and can even detect cancerous tumours. These examples, along with countless other existing and emerging applications of AI, help make people’s daily lives easier, especially in the developed world.

As of October 2021, 44 countries were reported to have their own national AI strategic plans, showing their willingness to forge ahead in the global AI race. These include emerging economies like China and India, which are leading the way in building national AI plans within the developing world.

Oxford Insights, a consultancy firm that advises organisations and governments on matters relating to digital transformation, has ranked the preparedness of 160 countries across the world when it comes to using AI in public services. The US ranks first in their 2021 Government AI Readiness Index, followed by Singapore and the UK.

Notably, the lowest-scoring regions in this index include much of the developing world, such as sub-Saharan Africa, the Carribean and Latin America, as well as some central and south Asian countries.

The developed world has an inevitable edge in making rapid progress in the AI revolution. With greater economic capacity, these wealthier countries are naturally best positioned to make large investments in the research and development needed for creating modern AI models.

In contrast, developing countries often have more urgent priorities, such as education, sanitation, healthcare and feeding the population, which override any significant investment in digital transformation. In this climate, AI could widen the digital divide that already exists between developed and developing countries.

The hidden costs of modern AI

AI is traditionally defined as “the science and engineering of making intelligent machines”. To solve problems and perform tasks, AI models generally look at past information and learn rules for making predictions based on unique patterns in the data.

AI is a broad term, comprising two main areas – machine learning and deep learning. While machine learning tends to be suitable when learning from smaller, well-organised datasets, deep learning algorithms are more suited to complex, real-world problems – for example, predicting respiratory diseases using chest X-ray images.

Many modern AI-driven applications, from the Google translate feature to robot-assisted surgical procedures, leverage deep neural networks. These are a special type of deep learning model loosely based on the architecture of the human brain.

Crucially, neural networks are data hungry, often requiring millions of examples to learn how to perform a new task well. This means they require a complex infrastructure of data storage and modern computing hardware, compared to simpler machine learning models. Such large-scale computing infrastructure is generally unaffordable for developing nations.

A robot assistant holds a tablet.
The developed world has an inevitable edge in the AI revolution. MikeDotta/Shutterstock

Beyond the hefty price tag, another issue that disproportionately affects developing countries is the growing toll this kind of AI takes on the environment. For example, a contemporary neural network costs upwards of US$150,000 to train, and will create around 650kg of carbon emissions during training (comparable to a trans-American flight). Training a more advanced model can lead to roughly five times the total carbon emissions generated by an average car during its entire lifetime.

Developed countries have historically been the leading contributors to rising carbon emissions, but the burden of such emissions unfortunately lands most heavily on developing nations. The global south generally suffers disproportionate environmental crises, such as extreme weather, droughts, floods and pollution, in part because of its limited capacity to invest in climate action.

Developing countries also benefit the least from the advances in AI and all the good it can bring – including building resilience against natural disasters.

Using AI for good

While the developed world is making rapid technological progress, the developing world seems to be underrepresented in the AI revolution. And beyond inequitable growth, the developing world is likely bearing the brunt of the environmental consequences that modern AI models, mostly deployed in the developed world, create.

But it’s not all bad news. According to a 2020 study, AI can help achieve 79% of the targets within the sustainable development goals. For example, AI could be used to measure and predict the presence of contamination in water supplies, thereby improving water quality monitoring processes. This in turn could increase access to clean water in developing countries.

The benefits of AI in the global south could be vast – from improving sanitation to helping with education, to providing better medical care. These incremental changes could have significant flow-on effects. For example, improved sanitation and health services in developing countries could help avert outbreaks of disease.

But if we want to achieve the true value of “good AI”, equitable participation in the development and use of the technology is essential. This means the developed world needs to provide greater financial and technological support to the developing world in the AI revolution. This support will need to be more than short term, but it will create significant and lasting benefits for all.

Joyjit Chatterjee, Data Scientist (KTP Associate), University of Hull and Nina Dethlefs, Senior Lecturer in Computer Science, University of Hull

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

What is the smart city, and why is cloud storage key?

What is the smart city, and why is cloud storage key?

David Friend, a specialist in cloud storage elaborates on What is the smart city, and why is cloud storage key?

Smart cities will demand a new paradigm for storage

(The image above is of Jamesteohart / Shutterstock)

Today, analytics, artificial intelligence (AI), and machine learning (ML) have become big business. Throughout the 2020s, Harvard Business Review[1] estimates that these technologies will add $13 trillion to the global economy, impacting virtually every sector in the process.

One of the biggest drivers of the value-add provided by AI/ML will come from smart cities: cities that leverage enhancements in such technologies to deliver improved services for citizens. Smart cities promise to provide data-driven decisions for essential public services like sanitation, transportation, and communications. In this way, they can help improve the quality of life for both the general public and public sector employees, while also reducing environmental footprints and providing more efficient and more cost-effective public services.

Whether it be improved traffic flow, better waste collection practices, video surveillance, or maintenance schedules for infrastructure – the smart city represents a cleaner, safer, and more affordable future for our urban centers. But realizing these benefits will require us to redefine our approach towards networking, data storage, and the systems underpinning and connecting both. To capitalize on the smart city paradigm, we’ll need to adopt a new and dynamic approach to computing and storage.

Providing bottomless storage for the urban environment

In practice, the smart city will require the use of vast arrays of interconnected devices, whether it be sensors, networked vehicles, and machinery for service delivery. These will all generate an ever-growing quantity and variety of data that must be processed and stored, and made accessible to the rest of the smart city’s network for both ongoing tasks and city-wide analytics. While a smart city may not need access to all the relevant data at once, there’s always the possibility of historic data needing to be accessed on recall to help train and calibrate ML models or perform detailed analytics.

All of this means that a more traditional system architecture that processes data through a central enterprise data center – whether it be on-premise or cloud – can’t meet the scaling or performance requirements of the smart city.

This is because, given its geographic removal from the places where data is generated and used, a centralized store can’t be counted on to provide the rapid and reliable service that’s needed for smart city analytics or delivery. Ultimately, the smart city will demand a decentralized approach to data storage. Such a decentralized approach will enable data from devices, sensors, and applications that serve the smart city to be analyzed and processed locally before being transferred to an enterprise data center or the cloud, reducing latency and response times.

To achieve the cost-effectiveness needed when operating at the scale of data variety and volume expected of a smart city, they’ll need access to “bottomless clouds”: storage arrangements where prices per terabyte are so low that development and IT teams won’t need to worry about the costs of provisioning for smart city infrastructure. This gives teams the ability to store all the data they need without the stress of draining their budget, or having to arbitrarily reduce the data pool they’ll be able to draw from for smart city applications or analytics.

Freeing up resources for the smart city with IaaS

Infrastructure-as-a-service (IaaS) is based around a simple principle: users should only pay for the resources they actually use. When it comes to computing and storage resources, this is going to be essential to economically deliver on the vision of the smart city, given the ever-expanding need for provisioning while also keeping down costs within the public sector.

For the smart city in particular, IaaS offers managed, on-demand, and secure edge computing and storage services. IaaS will furnish cities with the components needed to deliver on their vision – whether it be storage, virtualization environments, or network structures. Through being able to scale up provisioning based on current demand while also removing the procurement and administrative burden of handling the actual hardware to a specialist third party, smart cities can benefit from economies of scale that have underpinned much of the cloud computing revolution over the past decade.

In fact, IaaS may be the only way to go, when it comes to ensuring that the data of the smart city is stored and delivered in a reliable way. While handling infrastructure in-house may be tempting from a security perspective, market competition between IaaS providers incentivizes better service provision from all angles, whether customer experience, reliability and redundancy, or the latest standards in security.

Delivering the smart city is a 21st century necessity

The world’s top cities are already transforming to keep up with ever-expanding populations and in turn their ever-expanding needs. Before we know it, various sectors of urban life will have to be connected through intelligent technology to optimize the use of shared resources – not because we want to, but because we need to.

Whether it be a question of social justice, fiscal prudence, or environmental conscience, intelligently allocating and using the resources of the city is the big question facing our urban centers in this century. But the smart city can only be delivered through a smart approach to data handling and storage. Optimizing a city’s cloud infrastructure and guaranteeing cost-effective and quality provisioning through IaaS will be essential to delivering on the promise of the smart city, and thus meet some of our time’ most pressing challenges.

David Friend is the co-founder and CEO of Wasabi Technologies, a revolutionary cloud storage company. David’s first company, ARP Instruments developed synthesizers used by Stevie Wonder, David Bowie, Led Zeppelin and even helped Steven Spielberg communicate with aliens providing that legendary five-note communication in Close Encounters of the ThirdKind. Friend founded or co-founded five other companies: Computer Pictures Corporation – an early player in computer graphics, Pilot Software – a company that pioneered multidimensional databases for crunching large amounts of customer data, Faxnet – which became the world’s largest provider of fax-to-email services, Sonexis – a VoIP conferencing company, and immediately prior to Wasabi, what is now one of the world’s leading cloud backup companies, Carbonite. David is a respected philanthropist and is on the board of Berklee College of Music, where there is a concert hall named in his honor, serves as president of the board of Boston Baroque, an orchestra and chorus that has received 7 Grammy nominations. An avid mineral and gem collector he donated Friend Gem and Mineral Hall at the Yale Peabody Museum of Natural History. David graduated from Yale and attended the Princeton University Graduate School of Engineering where he was a David Sarnoff Fellow.

.

How will artificial intelligence power the cities of tomorrow?

How will artificial intelligence power the cities of tomorrow?

Published on 20 September 2021, in E&T, AJ Abdallah’s question of How will artificial intelligence power the cities of tomorrow?

How will artificial intelligence power the cities of tomorrow?

By AJ Abdallat, Beyond Limits

Achieving a decarbonised future will require efficiency-boosting measures that AI can help to identify and implement.

Artificial intelligence is taking the stage as smart cities become not just an idea for the future, but a present reality. Advanced technologies are at the forefront of this change, driving valuable strategies and optimising the industry across all operations. These technologies are quickly becoming the solution for fulfilling smart city and clean city initiatives, as well as net-zero commitments.

AI is becoming well integrated with the development of smart cities. A 2018 Gartner report forecast that AI would become a critical feature of 30 per cent of smart city applications by 2020, up from just 5 per cent a few years previously. Implementation of AI is rapidly being recognised as the not-so-secret ingredient helping major energy providers accomplish their lowest-carbon footprints yet, along with unparalleled sustainability and attractive profit margins.

What makes a city ‘smart’ is the collection and analysis of vast amounts of data across numerous sectors, from metropolitan development and utility allocation all the way down to manual functions like city services. Smart cities require the construction and maintenance of arrangements of sensors, equipment and other systems designed to create sustainability and efficiency.

Altering the strategy behind a city’s utilities operations is one of the major keys to making it smarter and more sustainable. AI solutions are already making significant strides where this is concerned. As the CEO of an AI company creating software for the utilities sector, the impact that advanced solutions are already having on the industry is something I’m very excited about.

One real-world example of AI powering smart city utilities is the Nvidia Metropolis platform, which uses intelligent video analytics to improve public services, logistics, and more. Nvidia describes it as being designed to: “create more sustainable cities, maintain infrastructure, and improve public services for residents and communities.” The company collects data from sensors and other IoT devices, city-wide, to provide insights that can lead to improvements in areas like disaster response, asset protection, supply forecasting and traffic management.

Another solution at the forefront of building smarter cities is a project led by Xcell Security House and Finance SA that aims to build the world’s first power plant guided by cognitive AI, driving utility development in West Africa. As the earliest implementation of an AI-powered plant from the ground up, it will employ advanced sensor-placement technology and techniques that embed knowledge and expertise into every part of the facility’s processes. Stakeholders will have streamlined access to facility-scale insights, creating a plant environment with greater risk mitigation as well as maximised efficiency and productivity.

These are just two of many emerging applications of AI in smart city development. When applying AI, the sector also stands to achieve greater cost and operational efficiencies in several key areas such as predictive maintenance, load forecasting/optimisation, grid reliability, energy theft prevention and renewable resource optimisation.

When discussing energy efficiency, many factors enter the picture, including the impact of environmental factors as commonplace as temperature and humidity levels. Historically, experienced human operators were best equipped to identify efficiency-boosting adjustments. Today, cognitive AI is making moves to encode that human knowledge and expertise across providers’ entire operations, delivering recommendations at a moment’s notice. Explainable AI creates the trust necessary for operators, engineers and stakeholders to solve acute issues quickly. The system’s shrewd situational awareness helps detect, foresee and solve problems, even when circumstances are in constant flux – scenarios as critical as an entire city’s water and power supply.

AI is already playing a principal role in supporting the move towards smarter cities by helping entire sectors get closer to efficiency and net-zero objectives. Achieving a decarbonised future will require more resourceful processes that boost efficiency and reduce waste. AI for utilities can elevate productivity, yielding more attention around resource consumption, and hastening the adoption of renewable, carbon-friendly strategies on a global scale.

According to a report from IDC, smart city technology spending across the globe reached $80 billion in 2016 and is expected to grow to $135 billion by 2021. It is imperative that companies, industries, and other entities looking to participate in this important stage of digital transformation seek out industrial-grade AI companies with software that provides holistic, organisation/sector/city-wide insights through sensor placement technology and data collection techniques.

Governments at every level, as well as public and private organisations, are facilitating technological implementation and digital transformation. Private and public partnerships have become a major mechanism by which cities can adopt technology that makes them smarter. The best course of action is to embrace AI that blends knowledge-based reasoning with advanced digitalisation techniques, helping stakeholders distinguish unanticipated scenarios and make tough choices.

Choosing the most dynamic form of AI to transform the utilities sector will contribute remarkably to the development of smart cities. Enhanced communication, strengthened collaboration, increased fuel savings and decreased waste will help companies – particularly in high-value industries – to increase their profits. Indelible process improvements, like streamlined operational capacities where all facilities function more efficiently in harmony, are the future of smart city technology.

AJ Abdallat is CEO of Beyond Limits.

Arab Narratives About Artificial Intelligence Are Explored

Arab Narratives About Artificial Intelligence Are Explored

Al-Fanar Media elaborates on a report where the so-called Arab narratives, about Artificial Intelligence, are explored. AI is also predicted, it could change the MENA region more profoundly than anything else before. How would that happen?
Is it through using a wide-ranging branch of computer science concerned with building intelligent machines capable of performing tasks that typically require human beings’ brains?
Or is it just another way of procuring the ability of a computer or computer-controlled or robot to perform tasks commonly associated with intelligent beings? Or put another way, is it needed to cover humans’ unpredictable performance by a more stable and well-controlled machine?

But what are Arab narratives?

The MENA region is culturally dominated by the Arab ethnocultural authoritarianism in the current socio-political systems and finds it difficult to get their respective populations to come up with some added value in any domain.

They might, though, have some success with the AI. Let us see.

The picture above is for illustration.

Arab Narratives About Artificial Intelligence Are Explored in New Report

By Tarek Abd El-Galil 

CAIRO—The Middle East and North Africa region needs to be more involved in the global debate about the development of artificial intelligence-related technology, says a new report that examines the narratives about technological futures that are widespread in the Arab world.

Narratives about future uses of robots and intelligent machines—how a culture portrays them in areas including history, literature, art and films—can influence the development and reception of artificial intelligence (AI), says the report. Yet Western perspectives typically dominate AI discussions, it says, and Arab perspectives are largely missing.

Arab Narratives About Artificial Intelligence Are Explored
The authors examine the ideas about artificial intelligence that are prevalent in the Arab world and seek to bring them into the wider debate (Image: Pixabay).

Titled “Imagining a Future With Artificial Machines: A Middle Eastern and North African Perspective,” the report was issued earlier this month by the Access to Knowledge for Development Center at the American University in Cairo’s School of Business and the Leverhulme Centre for the Future of Artificial Intelligence at the University of Cambridge.

It notes the MENA region’s rich history and culture and the ability of its youth to employ technology as a means of expression, by presenting  literary works based on science fiction or by their economic participation in technology-based start-ups, which can help create new business models suitable for the future and contribute to providing job opportunities in an area where young people make up a large majority of the population

Joining the Global Dialogue

“The region might not be rich in technology compared to developed countries,” said Nagla Rizk, a professor of economics and founding director of the Access to Knowledge for Development Center, who is a co-author of the report. “However,” she added, “it has a rich stock of culture and history that manifests in technological narratives in different ways.”

“Our participation in this initiative was an excellent opportunity to include the voice of our Arab region in the global dialogue platform on artificial intelligence narratives.”

Nagla Rizk  A professor of economics and founding director of the Ac cess to Knowledge for Development Center

The report comes as part of the Global Artificial Intelligence Narratives Project, an initiative within the Leverhulme Centre to build a network of experts around the world to analyze different cultures’ perceptions of the risks and benefits of AI. The initiative holds a series of workshops outside the English-speaking world, with local multidisciplinary groups of researchers and practitioners from fields related to AI narratives, such as science fiction, scientists, artists, AI researchers, philosophers, writers and anthropologists.

“Our participation in this initiative was an excellent opportunity to include the voice of our Arab region in the global dialogue platform on artificial intelligence narratives,” Rizk said.

She noted that because modern technology, especially artificial intelligence, is usually developed in technologically advanced countries in response to the needs and aspirations of their people and in a way that expresses their cultures, this can result in a kind of inequality, given that the rest of the world does not share those countries’ needs in developing this technology.

Not a Technology ‘Desert’

The report refutes the common notion that the MENA region is a technology “desert” devoid of ideas and the real development of technology. It reveals the existence of rich, rapidly growing technological oases that mix the influence of Western, Eastern and local cultures, and have their own independent character. (See the related articles “Genetics and Artificial Intelligence Drive Qatar University’s Covid-19 Research” and “Arab Researchers Use Artificial Intelligence in Bid to Thwart Fake News.”)

For example, technological development is being pushed at breakneck speed by the governments in the United Arab Emirates and Qatar, as well as in less affluent countries such as Egypt, Jordan and Tunisia. Such initiatives are often influenced by Western models, in contrast with the current grass-roots efforts and start-ups, which usually rely on simple technologies and local techniques that reflect the concepts of individuals.

“Stories about AI that are grounded in the realities of people living in the Middle East are the best way to explore local visions of the future using smart machines.”

Tomasz Hollanek  A media and technology researcher at the University of Cambridge and a student fellow at the Leverhulme Centre

“Stories about AI that are grounded in the realities of people living in the Middle East are the best way to explore local visions of the future using smart machines,” said Tomasz Hollanek, a media and technology researcher at the University of Cambridge and a student fellow at the Leverhulme Centre. Hollanek, who is also one of the report’s authors, believes it is important for these visions to reflect the aspirations and needs of the region’s people, rather than importing ideas from elsewhere, particularly from the English-speaking West.

Fear of Reinforcing Stereotypes 

The report expresses concerns that some narratives about artificial intelligence in the region will reinforce gender stereotypes in the future. It cites an example from a popular Egyptian comedy skit from the 1980s, in which a female robot named “Ruby” appears as a domestic servant who responds to orders from the play’s main male character.

In contrast, “Ibn Sina,” the first Arabic-speaking robot, created in the U.A.E., is anthropomorphized as male and is not a servant. Named after a famous 11th-century philosopher, physician and poet, the robot symbolizes the region’s scientific heritage and reflects strength and wisdom, the main traits of masculinity in patriarchal societies.

Another local example is a robot named “Zaki”—which means “smart” in Arabic.  Zaki is a chatbot used in an Internet banking platform in Egypt, and thus reflects men’s control of the financial sector, the report says.

Hollanek points out that narratives can have a direct impact on how technologies are conceived and developed. For example, the representation of certain groups on screen can have a realistic effect on who performs certain jobs: the more female AI researchers appear in films and TV series, the more likely young, ambitious women will pursue a career in AI research.

“We hope for a better reality and future for Arab women, away from stereotypes, which will naturally be reflected in their portrayal in technological narratives,” said Rizk.

Obstacles and Opportunities

“We just need to be able to discover talented people and properly employ them to build a base for technology development.”

Mohamed Zahran  A professor of computer science at New York University

According to Hollanek, the report reveals how post-colonial perspectives—both in the region and among MENA citizens and beyond—continue to significantly influence perceptions of the Arab region’s potential for full realization of the benefits of AI. That’s why he says it’s important to imagine a future with intelligent machines as a decolonial activity, as a way to resist the Western ideas of “progress” or “development.”

Mohamed Zahran, a professor of computer science at New York University, believes there are obstacles facing the region’s acceptance of the development of artificial intelligence. These include the fear that robots will take people’s jobs, and the fear of Western dominance in the technology market; fears the report also highlighted.

However, Zahran agrees with the report’s authors that the region will be able to overcome these obstacles, with its capabilities, talents, and emerging artificial intelligence start-ups, in addition to the ability to rent supercomputers that are now available.

While technology is Western, Zahran said, the report draws the world’s attention to the Middle East and what it can contribute to developing the future of artificial intelligence. “We just need to be able to discover talented people and properly employ them to build a base for technology development,” he said.

Create content about your university journey and win!