It has, in the recent past, been question of supplying Electricity from North Africa with notably the quickly miscarried project of Desertec. Could there be a revived or rebirth of the same or potentially the inception of the same? Would this explain the long and quiet convalescence of the Algerian president in Germany? In the meantime, kinimod in his WP page, wonders whether Energy from North Africa: h2 or hvdc?
The German energy demand is currently only covered to 17 % from renewable sources, albeit with an increasing tendency of half a percent per year (statista.de).
So 83 % are still missing for a complete decarbonization. The majority of this, namely 71 % of the total requirement, is currently covered by imports (weltenergierat.de). To do this, writes pv-magazine.de, we have to increase our photovoltaic area tenfold and our wind energy generation four times – a goal that many consider unattainable due to the acceptance problems of Germans.
One way out might be to import electricity and hydrogen on a large scale in the future instead of oil and gas. Then the gigantic solar fields would not cover German meadows, but Spanish, North African or Saudi Arabian desert areas, a win-win solution. Another advantage are supposedly the costs: since the capacity factor in Germany is only around 0.1, i.e. a 1 kW system only produces as much electricity in 10 hours as it would produce with one hour of full power, this factor in North Africa is 0.2 or higher (globalsolaratlas.com). For the same annual amount of energy, only half as much solar panel space is required, which is why solar power produced there costs only about half – or less. The countries there would have a slight additional income (which of course would increase the energy price again a little) and we would be rid of some of our energy worries.
There are roughly two paths for this solution:
- Electrolytically produced hydrogen, that is either liquefied directly or converted to ammonia with atmospheric nitrogen and then liquefied – which requires slightly less complex transport ships. It can also be transported by pipeline.
- Direct transmission of the solar power, perhaps buffered with storage for the hours after sunset, via HVDC lines.
What about the costs?
Renewable electricity is considerably cheaper in the MENA region (Middle East, North Africa) and southern Europe than here. In Portugal, solar power projects for 1.12 euro cents / kWh were agreed this year. In 2030, solar electricity costs are likely to be well below 1 c / kWh. In Germany, the electricity production costs for solar power are already below 4 c / kWh (solarify.de). In its position paper, the Federal Association of the New Energy Industry expects solar power production costs in Germany to be around 2.5 c / kWh, with storage adding another 1 ± 0.5 c.
Electricity can be transmitted with high voltage direct current (HVDC) lines over thousands of kilometers with little loss. In China there are some very long connections that bring wind power from the west to the industrial zones in the east. Starting in 2027, Singapore will receive a fifth of its electricity from a gigantic Australian solar field via the Suncable project – via a 3700 km long HVDC submarine cable. This electricity is supposed to cost 3.4 UScent / kWh. A storage facility in Australia will then still provide electricity in the evening hours (Forbes).
Generally, a 3000 km line adds 1.5 – 2.5 c / kWh to the electricity price (EIA study).
This means that the transport costs for MENA electricity are higher than the corresponding doubling of the German solar area (in 2030).
The cost of hydrogen consists of the cost of electricity, the cost of the electrolysis, which is mainly determined by the high investment for the electrolysers, and the transport costs.
For 2030 we can estimate electricity costs of 1 c / kWh for the south and 2.5 c / kWh for Germany. Storage costs of 1 c / kWh that may be reasonable are incurred everywhere.
The electrolyser costs in 2030 are given by Prognos as 2 – 8 c / kWh, in the EWI study with 1.5 – 2.4 c / kWh. They should be the same for all manufacturing regions.
According to the EWI study, the transport method is crucial for transport costs. If an existing pipeline can be rededicated and used for hydrogen, as is the case for southern Spain, they are low at around 0.4 c / kWh. However, if a ship has to be used, they rise to around 3 c / kWh because of the liquefaction required for this – or the conversion into ammonia and the subsequent liquefaction and the use of specialized ships.
With a little optimism we will end up with a hydrogen price of around 5 c/kWh for local production, around 4 c/kWh for southern Spain (pipeline transport) and around 6 c/kW for MENA production.
Electricity via HVDC would cost around 3.5 c/kWh, similar to the Sunline project, which roughly corresponds to the price for locally generated electricity.
Facit: Electricity from the south is not cheaper for us than local electricity because the electricity transport eats up the cost advantage. For H2 we can save a small cost advantage with pipeline transport if the pipeline already exists and only needs to be rededicated. In the case of ship transport, however, the hydrogen becomes considerably more expensive.
Since we will need a lot of electricity and also hydrogen for the decarbonisation of the economy, it may be necessary to obtain electricity, hydrogen or both from the south due to competition for land. Here, southern Spain is the cheapest export region, as both electricity and hydrogen transport infrastructure already exist. Electricity from North Africa would best be transported to Europe via HVDC and only converted into hydrogen there, because the transport costs for hydrogen by ship would be higher.